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Abstract

In this thesis, I discuss measurements to study strongly interacting Fermi-Fermi and
Fermi-Bose mixtures with strong population imbalance. We use a mixture of fermionic
6Li in combination with either fermionic 40K or bosonic 41K, the latter species being the
minority component and thus acting as an impurity in a large Fermi sea of noninteracting
lithium atoms. First, we conduct measurements on the Fermi-Fermi mixture where we
investigate the real-time evolution of the Fermi polaron after an interaction quench.
We find that the metastable repulsive polaron and the attractive polaron coexist if
the interspecies interaction is strong. In addition, we observe a slight change in the
measured signal when we increase the density of the minority species. As a next step,
we change from a Fermi-Fermi system to a Fermi-Bose system by exchanging 40K with
the bosonic isotope 41K. We find that we can use the condensed K atoms as a tool for
thermometry and probe the temperature of our fermions. In studying an interspecies
Feshbach resonance, we find that in the case of moderate repulsive interactions and when
the bosons are condensed, the two species separate spatially. We characterize the static
and dynamic behavior of phase separation, where the physics of an entire system is
governed by a thin interface between the two species. Finally, we add a dilute sample of
bosons to the Fermi sea and investigate the Fermi polaron with bosonic impurities. As we
increase the density of the minority component to the point where the bosons condense,
we observe an additional branch in the polaron spectrum indicating coexistence of the
Fermi and Bose polaron.



Kurzfassung

In dieser Arbeit werden Messungen besprochen, die zur Untersuchung von stark wech-
selwirkenden Fermi-Fermi- und Fermi-Bose-Gemischen mit starkem Populationsungle-
ichgewicht durchgeführt wurden. Wir verwenden eine Mischung aus fermionischem 6Li
in Kombination mit entweder fermionischem 40K oder bosonischem 41K. Die letztere
Spezies stellt die Minoritätskomponente dar und kann entsprechend als Verunreini-
gung in einem großen Fermi-Meer aus nichtwechselwirkenden Lithiumatomen angesehen
werden. Zunächst untersuchten wir mit unserer Fermi-Fermi-Mischung die Echtzeit-
entwicklung des Fermi-Polarons, wobei wir die Koexistenz des metastabilen repulsiven
Polarons und des attraktiven Polarons beobachteten. Außerdem beobachteten wir eine
leichte Veränderung des Kontrasts des Systems, als wir die Dichte der Minoritätsspezies
veränderten. Als nächster Schritt wechselten wir das Isotop von K und begannen, das
neue Fermi-Bose-System zu untersuchen. Wir fanden heraus, dass wir die kondensierten
K-Atome als Thermometer für eine Untersuchung der Temperatur unserer Fermionen
verwenden können. Bei der Erforschung der Interspezies-Feshbach-Resonanz fanden
wir heraus, dass sich die beiden Spezies im Falle moderater repulsiver Wechselwirkun-
gen, und wenn die Bosonen kondensiert sind, räumlich trennen. Wir charakterisierten
das statische und dynamische Verhalten dieser Phasentrennung, wobei die Physik des
gesamten Systems durch eine dünne Grenzfläche zwischen den beiden Spezies bestimmt
wird. Schließlich fügten wir eine verdünnte Probe von Bosonen in das Fermi-Meer ein
und untersuchten das Fermi-Polaron mit bosonischen Verunreinigungen. Wir fanden
eine erstaunliche Überseinstimmung zwischen unseren Messungen mit einer endlicher
Dichte der Minoritätskomponente und den theoretischen Voraussagen im Falle einer
einzelnen Verunreinigung. Als wir allerdings die Dichte der Minoritätskomponente bis
zu dem Punkt erhöhten, an dem die Bosonen kondensierten, beobachteten wir einen
zusätzlichen Zweig im Polaronspektrum, der auf eine Koexistenz des Fermi- und des
Bose-Polarons hindeutet.
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1Chapter 1

Introduction

Strongly interacting quantum many-body systems form the basis of complex problems
that describe groundbreaking new physics and exotic states such as spintronic devices
[Hir20] or superconductors [Kau21]. They range from problems involving the origin of
the universe, the quark-gluon plasma, to observable systems with high temperatures and
large spatial extent such as neutron stars, to small structures with low temperatures such
as superconductors. Or as Richard D. Mattuck put it in his introductory book about
Feynman diagrams [Mat92]:

“The many-body problem has attracted attention ever since the philosophers
of old speculated over the question of how many angels could dance on the

head of a pin.”

Apart from rather controversial debates amongst theologist, this question offers an in-
tuitive picture of what many-body problems are about. If we consider the situation of
many angels and a pinhead, we are dealing with a system of many bodies, or alterna-
tively: a many-body system. However, the problem arises when interactions between
angels are introduced into the system. This step transfers many single-body problems
into a single many-body problem. The complexitiy becomes apparent when considering
that the former reduces to individually solvable problems whereas the latter increases
exponentially with the number of angels, rendering the search for analytic or numeric
solutions impossible. The challenging task of predicting the multifariousness of physical
phenomena that arise from strongly interacting quantum many-body systems demands
combined effort of experimentalists and theoreticians. One approach to tackle such cum-
bersome tasks is to view a simpler problem by applying approximations and truncations
to the system. A rather simple scenario is considered first and slowly scaled up until a
similar level of complexity is reached as in the desired system. This is the point where
ultracold atom experiments show their strength. Considering, for example, the many-
body problem of many angels where each one of them attracts all of the others and the
whole group accumulates on the head of a pin. One could use a heavy atom to simulate
the unmovable pin head and a few light atoms as being the angels. The fact that the
atoms are ultracold helps in a sense that they will practically stand still. Then add a
short-range attractive interspecies interaction to simulate the attraction of the angels
towards the pin and an attractive long-range intraspecies interaction to take care of the
interaction amongst the angels. As the experiment is set up one can watch the system
evolve in real time1. The platform of ultracold atoms enables researchers to simulate a

1Note that the realization of such a scenario, including the build up of the experiment, will probably
take three years and a budget of about two million euros. However, if the simulation are done on an
existing experiment with the right tools, such a measurement is a matter of minutes.
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vast manifold of problems, from the manipulation of single atoms up to the realization
of billions of trapped degenerate atoms of different species, which is possible due to the
technological developments within the last 30 years.

The development of ultracold-atom experiments took place at the end of the 20st century
and peaked around 1997 when Steven Chu, Claude Cohen-Tannoudji, and Bill Phillips
were awarded the Nobel prize in physics “for development of methods to cool and trap
atoms with laser light” [Chu97]. At that moment it was possible to cool a sample of
dilute atoms in the gaseous phase down to degeneracy, a point in which the interpar-
ticle distance becomes comparable to the spatial extension of the particle itself. This
achievement opened the door to the world of quantum physics with ultracold atoms.
Theoretical predictions of the novel state of Bose-Einstein condensation (BEC) [Bos24,
Ein24] were confirmed with the first experimental verification and awarded by the No-
bel prize for Eric A. Cornell [And95], Wolfgang Ketterle [Dav95] and Carl E. Wieman
[And95] in 2001 [Cor01]. The challenges of creating a degenerate Fermi gas (DFG)
[Hol00, Sch01a, Tru01], due the fermions’ unfavourable thermalization dynamics, were
overcome soon after and the famous BEC-BCS crossover [Bar04a, Bou04, Gre05] was
observed and investigated. The two achievements of BEC and DFG opened the doors
to creating degenerate Bose-Bose, Fermi-Fermi and Bose-Fermi mixtures, which enabled
the investigation of new methods, such as ultracold polar molecules [Sag05, Dei08, Vit08,
Lan08, Ni08, Dan08], artificial gauge fields [Dal11, Gal19] as well as the observation of
novel phenomena such as superfluidity [Zwi05] or supersolidity [Tan19, Böt19, Cho19].
Ultracold-atom experiments offer the ability of trapping a single- (or multiple-) species
dilute atom cloud with tunable interactions, temperature, and density and the ability
of manipulating them globally or on a single-atom basis. Furthermore the atoms can be
imaged with a precision ranging from a single atom to billions of atoms. Due to their
vast controllability, diversity and tunability, ultracold atoms offer promising platforms
for many research topics such as quantum simulations [Blo13], quantum computation
[Sch12b, Par17], atomtronics [Ami21] and precision measurements [Ye06].

In the experiments presented in this thesis, ultracold atoms are utilized to investigate
quasiparticles. The description of such quasiparticles goes back to a famous many-body
problem originated in the field of condensed matter physics: the motion of an electron
in a crystal. Here a single impurity (the electron) is moving in a lattice of atom cores.
Interspecies interactions influence the impurity, as well as the environment, which leads
to a situation that can neither analytically nor numerically be solved exactly. Consider-
ing this problem, L.D. Landau developed his celebrated idea of quasiparticles [Lan33], in
which he describes a renormalization of the properties of the minority species caused by
its surrounding Fermi sea. In this picture the impurity is described by a dressed impurity
that polarizes its environment [Lan48], hence the name polaron. This quasiparticle plays
a crucial role in many systems, e.g. for charge transport in condensed matter systems
[Wöl18], or coherence times in superconducting circuits [Cat19]. However, to study the
polaron and its temporal evolution in systems where it occurs, probes would need to
be developed that operate on the time scales on which such a quantum process occurs,
which in conventional condensed matter systems is in the attosecond range. Another
and at the moment possible (but still non-trivial) approach is to change to a system with
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more favourable time scales. This can be done using ultracold atoms. The fact that the
trapped atoms are diluted and degenerate results in energy scales that are about twelve
orders of magnitude lower, compared to a condensed-matter system. This allows physical
processes to occur on the microsecond scale, enabling their observation with state-of-
the-art detectors. With the aid of Feshbach resonances [Chi10] the interaction between
neutral atoms can be tuned to an arbitrary strength, which enabled the experimental
observation of the Fermi polaron [Sch09], an impurity attractively interacting with its
fermionic environment. The investigation of the metastable repulsive Fermi polaron was
possible by utilizing fast excitation methods [Koh12]. Later on different configurations
as the Bose polaron [Hu16, Jør16, Yan20a], different mass ratios [Mas12, Sch18], differ-
ent dimensional systems [Kos12, Taj21, DO19], and the polaron-to-molecule transition
[Nes20] were and still are investigated. Theoretical calculations about the Fermi polaron
using the variational approach [Che06] and the T-matrix approach [Com07] based on the
assumption of a single impurity show remarkable agreement with experimental findings
even in the regime of strong interactions and finite concentration. This conundrum pro-
voked the question of the limits of Landau’s quasiparticle theory, which can be probed
by increasing the temperature or the density of the constituents. This highly non-trivial
task is currently being investigated in Fermi-Fermi mixtures [Sca17, Yan19, Muk19] and
Bose-Bose mixtures [Pap08, Ada21, Lev17], however, still lacks a description in the case
of a Fermi-Bose mixtures.

The measurements, carried out in the laboratory of Rudi Grimm at the Institute for
Quantum Optics and Quantum Information (IQOQI), are conducted with a mixture
of ultracold lithium and potassium. A sample of fermionic 6Li is evaporatively cooled
to degeneracy, which sympathetically cools a sample of either fermionic 40K or bosonic
41K, using an all-optical approach [Wil09, Spi10]. This experiment presented one of
the first mass-imbalanced Fermi-Fermi mixtures in the world and consequently offered
to investigate rich physics, and still does to this day. First measurements focused on
the search for interspecies Feshbach resonances [Wil08]. Subsequently the stability of a
three-fermion mixture at strong interspecies interactions [Spi09] and the observation of
the corresponding hydrodynamic expansion of the atomic cloud [Tre11] was investigated.
In 2012, the team working on this experiment explored the lifetime of the repulsive
polaron [Koh12], a metastable state that had not been observed at that time. The ground
state of this system at strong repulsive interactions is represented by a shallow dimer
state, which holds one peculiar feature due to the fermionic nature of the atoms and the
mass imbalance: The interaction between the dimer and the surrounding 40K atoms is
attractive [Jag14], in contrast to expectations from pure s-wave scattering. Furthermore,
the lifetime of those shallow molecules and their decay channels were investigated in
Ref. [Jag16], in which a suppression of loss processes due to the fermionic nature of
the dimers’ constituents was found. During this thorough investigations of the bound
state, the polaron was investigated further as well by measuring its decoherence in the
vicinity of the interspecies Feshbach resonance [Cet15]. Within this last publication a
nifty technique was developed. By optically shifting the center of the Feshbach resonance
the interaction between the Li and K atoms could be tuned on the timescale of hundreds
of nanoseconds. This fast interaction switch enabled us to study the real-time evolution
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of the Fermi polaron. These measurements are presented as the first publication in this
thesis (see Ch. 4).
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Overview of the work presented in this
thesis

In this Chapter, I provide an overview of the work I have done in the FeLiKx experiment
over the past six years, which is mainly represented by the publications presented in
Chapters 4-8. I joined the team during the measurements of the first publication (see
Chapter 4) in the summer of 2015. Previous investigations, in which the Fermi polaron
was observed and characterized [Koh12, Cet15] opened many new questions on this
intriguing particle and suggested the main research line of my thesis to be on Fermi
polarons in our Li-K system with the focus on interacting Fermi-Bose mixtures.

Chapter 3: Introduction to polarons in ultracold-atom experiments

This Chapter presents a short introduction into the setup of the FeLiKx experiment and
the methods with which the atoms are manipulated and probed. Furthermore the Fermi
polaron and its properties are introduced on the basis of the polaron spectrum, which
reflects the energy of the dressed impurity in dependence of the interspecies interaction.
After that, in a brief theoretical summary, common tools for describing Fermi polarons
in particular regimes are presented. The Chapter concludes with a general discussion of
various ultracold atomic systems in which polarons can occur.

Chapter 4: Ultrafast dynamics of Fermi polarons

In the work published in Science 354 6308 (2016) we performed a spectroscopic Ramsey
sequence to determine the contrast of a Fermi polaron after an ultrafast quench from a
non-interacting into a strongly interacting system. One intriguing feature of this mea-
surement is the fact that this quench is more than an order of magnitude faster than
the fastest time scale of the system, which is determined by the Fermi time (see Supple-
mental Material of Ref. [Cet15]). This enabled us to observe the temporal evolution of
a quantum many-body system for positive and negative inter-particle scattering lengths
in real-time: the birth of the repulsive and the attractive Fermi polaron. In the case
of resonant interactions we observed a rapid decay of the contrast followed by an oscil-
latory behavior, which we interpreted as a beat of the two polarons coexisting in this
special situation. By comparing these measurements with two different theoretical ap-
proaches1, we found that finite-temperature effects play a crucial role in our experiment

1Recently the truncated-basis approximation (TBA), utilizing the variational Ansatz, was extended
for finite temperatures in Ref. [Liu19] and striking agreement with our data was achieved. This illustrates
once more the remarkable accuracy of the single particle-hole approximation at strong interactions.

https://science.sciencemag.org/content/354/6308/96.full
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and would diminish the possibility of observing the Anderson orthogonality catastrohpe
[And67, Kna12] in our system. However, we saw a different intriguing effect, namely
eventual polaron-polaron interactions. If investigated further, such interactions can lead
to the break down of Fermi-liquid theory and it can lead to insight into systems beyond
Landaus famous theory.

Chapter 5: Introducing bosons to our system

So far we worked with a Fermi-Fermi mixture of 6Li and 40K and already saw hints on
polaron-polaron interactions, which we wanted to investigate further. One method to
do this is to increase the concentration of the minority species and observe the response
of the system. However, since the density of a single spin-state Fermi gas is limited by
Fermi pressure, we decided to introduce the bosonic isotope 41K into our setup. We
implemented a cooling and trapping sequence for the bosonic isotope 41K into our setup
and successfully generated our first Bose-Einstein condensate in 2016. After this we
found that this BEC can be used as a tool for thermometry and published the results in
Phys. Rev. A 95, 053627 (2017). The determination of the temperature in a degenerate
Fermi gas can pose a challenge due to the fact that it is usually determined by the
wings of a polylog function and is therefore subject to large error bars. With our novel
method, we carefully ensure that the small BEC is only partially condensed and fully
thermalized with the surrounding Fermi gas. Then we determine the BEC fraction and
calculate the temperature of the fermions, via a simple mathematical relation. With the
aid of this thermometric method, we could determine our temperature to be as low as
T/TF = 0.059 with a remarkably small error of ±0.005.

Just before we started these measurements, we implemented a novel D1 cooling stage in
our Li system [Fri15] in order to further decrease the temperature. This and the differ-
ent preparation schemes explain the low temperatures, relative to the previous polaron
measurements where T/TF ≈ 0.1. With this new method and the low temperatures, we
went in search of suitable FR for the new 6Li-41K mixture.

Chapter 6: Phase separation in the 6Li-41K system

By immersing a thermal bosonic sample into a Fermi sea, scanning the magnetic field,
and looking for loss features, we found a suitable FR around B0 ≈ 335G. The next
step was to repeat this loss measurements around 335G with a condensed sample of K
in order to to characterize the environment of the Feshbach resonance for future high-
precision measurements. By comparing both loss measurements we found a peculiar
behavior. The measurement, in which the bosonic density was greatly increased due
to condensation, showed a strong suppression of three-body recombination loss in the
presence of strong repulsive interparticle interactions. After careful analysis, we found
that this is due to the fact that the fermions are almost completely removed from the
spatial region of the BEC. The investigation of phase separation (PS) was published in
Phys. Rev. Lett. 120 243403 (2018). The intriguing thing about such a phase-separated
state is that the physics of the whole system is governed in a small region, the interface,

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.053627
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.243403
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where bosons and fermions can still overlap. We found an elegant way to quantify the
PS by measuring the dependence of the three-body recombination loss on the interaction
strength. A comparison with numerical calculations, in which we minimize the energy
functional in order to obtain the densities, shows that the influence of the kinetic-energy
term is responsible for the smoothening of this phase transition.

Naturally we also investigated the region of attractive interaction around the FR and
observed enhanced loss features in the presence of the BEC. This occurence is referred
to as the mean-field collapse and results from Li particles inside the BEC, attracting K
atoms, and leading to the subsequent collapse of the condensate [Osp06a, Zac06]. After
observing and characterizing the process of phase separation from a static perspective we
were wondering how such a system behaves as collective modes are excited, for example
due to an interaction quench. Therefore the next step was to investigate the dynamical
behavior of a phase-separated sample.

Chapter 7: Dynamics of phase separation

In order to test the influence of PS on the dynamics of our system we excited collective
modes and measured its oscillation frequency for different interaction strengths. We
published the results in Phys. Rev. A 99 041602(R) (2019). Since, in the PS regime,
the small interface between 6Li and 41K is the only region where the two species interact,
we decided to excite a volume changing mode of K, the breathing mode. As the name
suggests, after excitation the interface will inflate and deflate and the influence of PS
will become apparent in a change of the oscillation frequency. Indeed we saw a strong
increase in the frequency of the breathing mode of the BEC, as we approached the center
of the Feshbach resonance, until the value stagnated. We interpret this behavior as an
effect of increased Fermi pressure, which leads to an increase of the frequency until, at
a certain interaction strength, full phase separation is reached. The two species are as
separated as they can be and the frequency does not change any further.

With our observations of PS and BEC collapse, we have characterized the 6Li-41K Fesh-
bach resonance. This enables us to start precision measurements, such as the investi-
gation of Fermi polarons with bosonic impurities, in which we can tune the interspecies
interaction strength of our new Fermi-Bose system.

Chapter X: Breakdown of FeLiKx

After the measurements for the publication presented in Chapter 7 were finished the
experiment revealed its age and collapsed. The FeLiKx lab repairs took up one-third
of my time as a PhD student. Within the next, almost, two years we did not conduct
a single measurement. After we repaired/replaced many broken lasers, TA chips, laser
diodes, control units, broken bus systems, broken power supplies, broken computers, a
broken air conditioning system and burned oven parts, we fixed almost every part of the
lab. In 2020, we recovered the experiment and were able to continue our measurements.
Note, however, that despite the repairs and improvements, as of now we are working

https://doi.org/10.1103/PhysRevA.99.041602
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with atom numbers that are reduced by a factor of two compared to previous polaron
measurements. After a careful check of the entire experiment, we believe that a clogging
of the oven is the reason for the low atomic numbers. Therefore we are currently working
on a new oven design, in order to recover old conditions and hopefully even get better
atom numbers.

Chapter 8: Stability and breakdown of Fermi polarons

After repairing the main issues of the experiment we focused again on the investigation
of the Fermi polaron with bosonic impurities (PRA 103, 053314 (2021)). We found
that a thermal cloud of bosons, immersed in a large Fermi sea matches the theoretical
description of a single impurity, as in the case of fermionic impurities. However, as the
bosons formed a partial Bose-Einstein condensate an additional branch evolved in the
spectrum for repulsive interspecies interactions. We interpret the situation to be such
that the BEC serves as an environment for the few fermions that are located within
its spatial extent. This conjecture is strengthened by the good qualitative agreement
between the observed energy shift of the BEC and a theoretical description in terms
of Bose polarons. Therefore, our partially condensed K sample immersed into the Li
Fermi sea provides a platform in which both the Fermi polaron and the Bose polaron can
coexist. In addition to that we probed the regime of intermediate concentration C ≈ 1

and found hints towards eventual polaron-polaron interactions in this regime. When
conducting Rabi-oscillation measurements we discovered that the resonance frequency
of the condensed K sample, in the presence of Li, is dependent on the applied RF power
and therefore on the number of possibly transferred atoms. This feature underlines once
more the presence of density-dependent effects that lead to the break down of the Fermi
polaron picture.

With this we have investigated the Fermi polaron with fermionic and bosonic impurities
and observed the transition to a system with Bose polarons. Our near- and far-future
projects are discussed in Chapter 9.

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.053314
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Polarons in ultracold atom experiments

Ultracold atom experiments provide a platform for quantum simulations, which can
be used to tackle challenging many-body problems. Landau’s celebrated Fermi-liquid
theory presents a description of an interacting Fermi gas, which paved the way to the
investigation of such problems. One famous problem is to understand the behavior of
an electron in a crystal lattice, which can be simulated by an impurity particle im-
mersed in a degenerate quantum gas. The focus of this Chapter lies on impurities and
how their strong interaction with their fermionic environment leads to the formation
of Fermi polarons. These quasiparticles [Lan33] emerged from Landau’s famous Fermi-
liquid theory. In Section 3.1, I introduce the experimental setup and two working tools,
which are utilized to produce a sample of strongly interacting ultracold atoms, namely
Feshbach resonances and radio-frequency pulses. Furthermore I explain a method that
is used to probe this many-body system, which is commonly known as radio-frequency
spectroscopy. After this the polaron is introduced in Section 3.2. First, the properties on
the basis of the spectral response will be discussed, after which two theoretical models, to
calculate certain parameters of the polaron, are introduced. Since the explanations will
be tightly bound to the experiments presented in Chapters 4-8, I will finally discussion
further systems around open questions in the field of polaron physics.

3.1 Introduction to the FeLiKx experiment

In this Section, the basic working principle and the setup of the FeLiKx experiment,
in which the measurements presented in this thesis were conducted, is discussed. This
is followed by a brief overview on Feshbach resonances, atoms, radio-frequency pulses
and the interaction between the atoms and these pulses. Finally, all of these topics
can be merged and a radio-frequency spectrum of an atomic species in the vicinity of
a Feshbach resonance is introduced. Table 3.1 provides an overview of a few important
quantities, which will be used later in the text. Note that the basics of Bose and Fermi
gases, ultracold scattering processes and Feshbach resonances are explained in several
excellent reviews and text books [Ket08, Ket99, Pit16, Gre17b, MW03, Chi10] and shall
therefore not be treated in detail in this thesis. The abbreviation FeLiKx stands for
Fermionic Lithium and Kalium1. The last letter x serves as a placeholder for the,
still up-to-date, future plan to implement a third atomic species. This dual-species,
mass-imbalanced experiment was designed using an all-optical approach to cool and
trap the two fermionic species 6Li and 40K [Wil09, Spi10]. In 2016 an extension to work

1Kalium is the german name for potassium. The name is derived from the arabic word ø



ñÊ
�
¯ for

alkali.
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Table 3.1: Table of commonly used quantities in ultracold-atom experiments. The
example values in the second column show typical working conditions of the FeLiKx
experiment.
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with the bosonic isotope 41K was added to the experiment. Now the system can be
used as either Fermi-Fermi (6Li-40K) or a Fermi-Bose (6Li-41K) mixture. In order to
reach quantum degeneracy certain length scales of the system play a crucial role. As
the temperature decreases and therefore the thermal de Broglie wavelength approaches
values that are on the order of the interparticle distance λdB ≈ d (see Table 3.1) the
fundamental nature of the atoms, leading to quantum statistics, starts to play a crucial
role. Bosons will start to occupy the lowest momentum state and form a Bose-Einstein
condensate (BEC), whereas for fermions, due to the Pauli exclusion principle, only one
atom can occupy one quantum state. Thus at very low temperatures T � TF many
accessible momentum states of a Fermi gas are occupied and therefore s-wave scattering
processes are strongly suppressed. Since cooling processes rely on the thermalization
of the ensemble, which requires the single atoms to scatter off of each other, a single
spin state Fermi gas cannot be cooled efficiently to very low temperatures by its own.
However, in the FeLiKx experiment the Li atoms are distributed in two of the three
energetically lowest Zeeman sublevels, denoted Li|1〉 (F = 1/2, mF = 1/2), Li|2〉 (F =

1/2, mF = −1/2) and Li|3〉 (F = 3/2, mF = −3/2). The K atoms are prepared, via
spin relaxation, almost fully polarized in the third to lowest K|3〉 (F = 1, mF = −1)
and lowest K|1〉 (F = 9/2, mF = −9/2) Zeeman sublevel in the case of the bosonic
and fermionic isotope, respectively. They are then sympathetically cooled with the
other species through thermalizing collisions. For more details on the preparation stage
of the FeLiKx experiment I refer to [Wil09, Spi10] and the Supplemental Material of
[Lou18b]. Typical atom numbers N and temperatures at the end of a cooling sequence
are NLi ≈ 4×105, NK ≈ 3×104 and T ≈ 100 nK. Compared to the corresponding Fermi
energy this results in T/TF, Li ≈ 0.1 and T/TF, K ≈ 0.3 and, in the Fermi-Bose case, a
BEC fraction of β ≈ 0.5.

3.1.1 Feshbach resonance

A Feshbach resonance (FR) is a very important and commonly used tool in ultracold-
atom experiments to magnetically tune the interspecies or intraspecies interaction strength.
Its detailed mechanism is explained in the review of Ref. [Chi10] and shall only be briefly
explained here. The basic idea of the occurrence of a FR can be captured in a two-channel
model. Figure 3.1(a) presents a sketch of a FR between Li and K. The black solid line
(lower potential curve) asymptotically connects to two free particles and describes there-
fore the energetically accessible channel or “open channel” for two particles scattering
with collisional energy Ec. Note that due to the low energy of the constituents in ultra-
cold atom experiments, collisions are reduced to s-wave scattering [MW03] and Ec ≈ 0.
The upper potential curve (green solid line) depicts an energetically forbidden channel,
or “closed channel”, and exhibits bound states. The one that is in the vicinity of the scat-
tering state is marked as the horizontal line. If the bound state energetically approaches
Ec, the colliding atoms resonantly couple to this bound state and their scattering length
diverges. If the magnetic moment of the closed and open channel differ δµ 6= 0 the en-
ergy of the scattering state and the molecular state vary with an applied magnetic field
∆E = Bδµ, as illustrated by the dashed black and green lines in the inset of Fig. 3.1(a).
Due to the resonant mixing of the two channels, the crossing of the scattering and the
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Figure 3.1: Two channel model describing the occurrence of a Feshbach resonance.
Panel (a) depicts the energies E as a function of the interparticle distance r. The green
and black solid lines represent the closed and open channel, respectively. The former
of the two potential curves exhibits a bound state (green horizontal line), which lies
energetically close to the collisional energy Ec of the two incoming particles. Due to the
fact that the dimer state and the scattering state posses a different magnetic moment,
the coupling between them can be tuned by changing the magnetic field B. The inset
depicts the molecular and the atomic channel as the dashed green and black lines,
respectively. Due to the mixing of the channels an avoided crossing appears. Panel (b)
shows the dependence of the scattering length on the magnetic field detuning, measured
relative to the pole of the resonance B0, where a diverges. The green dashed line in the
lower panel illustrates the molecular branch of the FR. For large magnetic detunings its
slope is determined by the difference of the magnetic moment of the two channels δµ.
In contrast, close to the center of the FR the solid black line indicates the increasing
influence of the open channel. The quadratic dependence of the energy of these shallow,
dressed molecules on the magnetic field marks the universal regime. This figure is based
on [Chi10].

molecular state becomes an avoided crossing and two separated branches evolve [Ket08].
The repulsive branch, where two atoms scatter and repel each other (upper solid line)
and the energetically lower lying attractive branch (solid green line). The latter shows
weak attraction on the very right side of the sketch, where no bound state can exist in
three dimensions. As the attraction grows up to the point where the scattering length
diverges and the center of the resonance B0 is reached, molecules, illustrated by the
grey dotted line can form and represent the new ground state of the system2. In an ex-
periment, such molecules are typically produced by adiabatically ramping the magnetic
field from the weakly attractive regime via the avoided crossing to the molecular state
[Fer08]. Since the repulsive branch is energetically higher than the molecular state and
therefore does not represent the ground state of the system, one can as well create a
strongly repulsive mixture and wait until the atoms decay into the lower lying molecular
state. However, such a decay is accompanied by a severe gain in kinetic energy and

2Note that in the case of two degenerate Fermi gases, even weak attraction can indeed lead to weakly
bound states. This peculiar effect caused by a many-body phenomenon, in which a Fermi surface can
be viewed as a two-dimensional entity and in two-dimensional systems bound states do exist for weak
attractive interactions. This many-body effect led to the investigation of the description of Cooper pairs
and the topic of BEC-BCS crossover [Ket08].
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consequently with significant heating and atom loss, since cold atom traps are usually
shallow.

A sketch of the dependence of the scattering length a on the magnetic field B around
the point of resonant coupling B0 is shown as the red solid line in the upper panel of
Fig. 3.1(b). It is commonly described by the equation [Moe95]

a = abg

(
1− ∆

B −B0

)
, (3.1)

with ∆ representing the distance between the pole of the resonance and the zero-crossing
of a. Positive and negative scattering lengths mark the regions of repulsive and attractive
interactions, respectively. The background scattering length abg and the width of the
FR ∆ can be found theoretically, via coupled-channel calculations, or experimentally,
via radio-frequency spectroscopy [Chi10]. Note that these two quantities can also take
negative values. As the energy of the bound state lies below the energy of the scattering
state in the open channel, B − B0 < 0 in Fig. 3.1, a molecule can be formed. The
resulting binding energies are sketched in the lower panel of Fig. 3.1(b). In the case of
large negative detuning, the binding energy is proportional to the differential magnetic
moment δµ and calculations via a two-channel model, where both the open and the
close channel are considered, are necessary to describe the situation. However, the
region of resonant coupling is of particular interest. In this regime the open channel
contribution dominates the interaction process and leads to the occurrence of a universal
regime. The characteristic feature of such a regime is that a detailed knowledge of the
scattering potential is not required, since the scattering length is much bigger than the
interatomic potential. The green/black solid line in the lower panel of Fig. 3.1(b) depicts
this universal regime, where the binding energy Eb = ~2/(2mra

2) is solely dependent
on the inter-particle scattering length a and the reduced mass mr. The width of this
regime varies between resonances and determines the physics that can be experimentally
observed. For this reason, Feshbach resonances are divided into the two classes of open-
channel and closed-channel dominated resonances, respectively. The former, in contrast
to the latter, possesses an extension of the universal regime over a large range of the
width of the resonance ∆ and is therefore experimentally better (or at all) accessible.
Note that in the field of ultracold atoms the two different classes of FR are often sloppy
referred to as broad and narrow resonances, which can be misleading, since the width
of a FR, ∆, is not the only parameter that is important for this classification.

In order to distinguish between an open-channel and a closed-channel dominated FR it
is useful to introduce a characteristic length scale, which depends on the parameters that
define the width of the universal regime of the particular FR and compare it to a typical
length scale of the system. Many different notations can be found in literature, such as
η [Köh06] and sres [Chi10] as dimensionless interaction parameters, or ares [Bru04] and
R∗ [Pet04, Mas12, Tre12] as length scales. For the experiments presented in this thesis
the length parameter

R∗ =
~2

2mrδµabg∆
, (3.2)
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Figure 3.2: Light and atom - radio frequency pulse (a) and Zeeman sublevels of an
atom (b). The left upper panel in (a) depicts a sinusoidal RF signal with a rectangular
envelope of length τRF oscillating at a frequency νRF. The power-spectral density
(PSD) is obtained by a Fourier transformation, indicated by the horizontal arrow (FT).
It represents the RF power at each frequency, and depicts a sinc-function with distinct
side lobes. In comparison, the lower panel depicts the time dependent signal A(t) of a
Blackman pulse with frequency νRF. A gaussian fit to the dominant frequency peak for
both pulse shapes is shown as the black solid line and serves to compare their wdiths
σRF. (b) Zeeman sublevels of the 2S1/2 ground state of a 41K atom in dependence of
the magnetic field. The two levels F = 2 and F = 1 at B = 0 depict the finestructure.
Higher B-fields lead to the hyperfine splitting illustrated by the dashed and solid lines,
where the latter are used in the FeLiKx experiment. The particular states and their
energy differences at a field of B ≈ 335G are emphasized in the Inset. The energy
splittings on the order of 60MHz are conveniently accessible, by commercial electronic
devices.

which combines all relevant parameters of the FR that are influencing its universal
regime, is compared to the typical length scale in strongly interacting fermionic systems
(a → ±∞), namely the interparticle distance. In an ultracold Fermi gas this quantity
is given by the inverse of the Fermi wave vector kF. Different characters of FRs can
lead to different physical phenomena. In early experiments broad resonances, defined
to be in the regime where kFR∗ � 1, were common since they occur in homonuclear
alkali-atom experiments. These types of FR present ideal conditions to investigate the
BCS-BEC crossover [Ket08]. On the other hand narrow resonances, where kFR∗ � 1,
are coincidentally more common in hetero-nuclear mixtures and enable a more diverse
platform of physical effects, such as view-body bound states [Joh17].

The FR used in the experiments presented in this thesis reach values for the dimen-
sionless interaction strength of kFR∗ . 1, which can be viewed as narrow resonances.
Reference [Mas12] discusses the influence of the effective range and the mass imbalance
of the two scatterers on the effective shape of the FR in the case of a single impurity
immersed into a Fermi sea. One intriguing outcome of this calculations is that the tran-
sition of the ground state of a system can be significantly changed when considering the
effective range of a narrow FR. Examples for such an effect are discussed in Sec. 3.2.
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3.1.2 Light-atom interactions

Spectroscopy describes the measure of the response of a system to an applied electro-
magnetic (EM) radiation field that is is varied in frequency. The resulting spectrum
can be used to analyze the EM source by a known medium and, in the case of a known
source, it can reveal information about the composition of the system. This method has
a wide range of applications. Two prominent examples for spectroscopic methods are
the diffraction of light on a prism and the determination of the composition of stars by
EM radiation in the field of astronomy. For this reason, it is divided into many different
classes, according to frequency ranges. In ultracold-atom experiments we use, amongst
others, radio-frequency (RF) spectroscopy, which covers a frequency range of 106 Hz-
109 Hz. Due to its fitting frequency range, this very powerful tool allows to probe and
manipulate atomic and molecular states on a tremendously level of precision [Mar88,
Sch10]. In a nutshell, as the frequency of the (monochromatic) RF probe is varied it will
couple to and manipulate the system as the frequency is in resonance with the atom that
is probed. The principle of this probing technique relies on the details of the RF pulse,
the composition of the single atoms being probed, and, consequently, on the interaction
between the atom and the EM field. These three topics shall now briefly be discussed
before an example-spectroscopy measurement is introduced.

In order to create an RF pulse, suitable to manipulate ultracold atoms, the signal of
an RF generator is, if necessary, amplified and then connected to an antenna. In the
case of the FeLiKx experiment the antenna consists of a copper wire soldered to a BNC
connector with some capacitors in order to tune its resonance frequency and match its
impedance [Tie99]. The simplest form of an RF pulse consists of a sinusoidal signal with
frequency νRF and a rectangular envelope with length τRF, as depicted in the upper panel
of Fig. 3.2(a). The envelope is obtained by simply switching the frequency generator on,
applying the pulse A(t) = A sin(2πνRFt) with amplitude A for a duration of τRF and
ensure that the latter is much longer than the switching time. However, the simplicity
of the pulse has a drawback, which becomes apparent when considering the frequency
domain, obtained by the Fourier transform (FT) of the signal. The transformed signal is
not monochromatic (singly peaked), but has the shape of a sinc(ν) = sin(ν)/ν function
(FT of a square pulse) with distinct side lobes. If such a pulse is applied to an unknown
system, multiple states can be excited at the same time and the resulting spectrum can
be misinterpreted. Note that a pulsed RF signal can, in contrast to a continues wave,
never be truly monochromatic, since the finite duration will always lead to a finite width
in the frequency domain. However, side lobes can be suppressed. A good alternative
to the rectangular pulse is the Blackman-shaped pulse [Bla], as illustrated in the lower
panel of Fig. 3.2(a), which is widely used in ultracold-atom experiments. It is described
by

A(t) =

[
0.42− 0.5 cos

(
2π

t

τRF

)
+ 0.08 cos

(
4π

t

τRF

)]
× sin (2πνRFt) (3.3)
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and has the advantage that the side lobes in the frequency domain are strongly sup-
pressed3. Both spectral functions A(ν) in Fig. 3.4(a) can now, for the sole reason to
discuss the two functions, be approximated by a gaussian and correspondingly associated
to a standard deviation σRF , which is proportional to the inverse of τRF. If compared to
the rectangular RF pulse, it becomes apparent that the width of the Blackman shaped
pulse is increased. This fact reveals a disadvantage of the latter, since the width in
the frequency domain is related to the resolution of the measurement and the transfer
probability, as discussed later. In the case where neither the antenna, nor the atom can
be changed and the resonance frequency is fixed (resembling a natural situation in a
laboratory), the largest possible power of the RF generator determines the shortest pos-
sible pulse duration for an atom transfer. In other words, the limit of the fastest atom
manipulation is given by the power of the RF signal. As an example, in the FeLiKx
experiment, a 100W RF amplifier is used to drive pulses at νRF = 57MHz in order to
excite an atom with a minimum possible duration of τRF = 56µs. If the same power is
applied for a Blackman as for a pulse with rectangular envelope, the latter will be faster.
Both pulse shapes have their advantages and disadvantages and are therefore used in
the according situations. The Blackman pulse is used when complicated and unknown
structures, as for example a polaron spectrum, need to be investigated, whereas the
rectangular pulse is applied when short pulses are crucial, e.g. in the presence of fast
loss processes.

The second ingredient to RF spectroscopy in ultracold-atom experiments, besides the
RF pulse, are atoms. Figure 3.2(b) shows the fine- and hyperfine-structure of the 2S1/2

ground state of a 41K atom. As an external B-field is applied, B > 0, the degeneracy
of the finestructur F = 2 and F = 1 is lifted and the Zeeman sublevels appear in the
spectrum. Atoms occupying different sublevels posses different angular momenta with
respect to the quantization axes. Therefore, when applying an RF pulse with the right
polarization (given by the orientation and profile of the antenna), such that angular
momentum conservation is fulfilled, an atom can be transferred into a neighbouring spin
state, provided that the frequency of the pulse matches the difference of the two states
hνRF = hνHFS. The measurements presented in this thesis are conducted in the three
lowest hyperfine states of potassium, K|1〉, K|2〉, and K|3〉, emphasized in the inset of
Fig. 3.2. This example shows that an RF pulse with a frequency of about ∼ 57MHz
must be applied in order to transfer an atom from the state K|2〉 into the state K|1〉.

The detailed knowledge of the interactions between atoms and light (RF pulse) is crucial
in order to identify a suitable method to probe ones system. The situation of a K
atom in the state K|2〉 that is transferred into the state K|1〉, which itself can undergo
interactions with the surrounding Li Fermi sea, can be described by a two-level system
with damping. The excited state, K|1〉, can be subject to decay with a rate Γ, which
is coupled to a near-resonant radiation field with detuning ∆ν = νRF − ν0 from the
resonance frequency ν0 of the two states. The coupling strength is expressed via the
Rabi frequency Ω0 = µ12E0, with µ12 and E0 being the transition dipole moment of

3In an ideal scenario a gaussian envelope would be used, because its Fourier transformation is simply
another gaussian. However, rather expensive arbitrary waveform generators would be necessary in order
to realize such a modulation. For many applications, such a precision is not necessary since residual side
lobes in a Blackman pulse are negligibly small.
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Figure 3.3: Rabi oscillations and the Bloch sphere. The black line shows the number
of transferred atoms from K|2〉 into K|1〉 as an RF pulse is applied with Rabi frequency
Ω0 for pulse durations of up to τRF = 2π/Ω0, which corresponds to a 2π-pulse. The
second curve with slightly lower amplitude, green solid line, shows Rabi oscillations for a
slightly detuned radio frequency and therefore a generalized Rabi frequency of Ω > Ω0.
The upper panel also shows an example Bloch sphere, where the states are defined as
K|2〉 and K|1〉 being on the bottom and top of the sphere, respectively. The lower
panel illustrates the movement of the Bloch vector on the sphere for the corresponding
Rabi oscillation (upper row:black, lower row: green). The black and green dots in the
spheres shall help the reader to track the movement of the Bloch vector.

the two atomic states and the applied RF field, respectively. Following the derivations
of [Tan], the Bloch equations can be obtained as:

u̇ = ∆ν v − Γ

2
u, (3.4)

v̇ = −∆ν u− Ω0 w −
Γ

2
v, (3.5)

ẇ = Ω0 v −
Γ

2
(1 + 2w). (3.6)

They describe the time dependence of the coordinates of the Bloch vector in its corre-
sponding Bloch sphere, as depicted in the left upper side of Fig. 3.3. The Bloch sphere
is used to provide an intuitive geometrical representation of the evolution of the pop-
ulation in the two states. The three axes u, v, w span the coordinate system and the
arrow indicates that the K atoms are in the state K|2〉, which is the starting condition at
t = 0. The Bloch spheres in the lower part of Fig. 3.3 visualize the rotation of the Bloch
vector. The upper row illustrates a textbook Rabi oscillation of a two level system, co-
herently driven by an external radiation field. After a time Ω0t = 0, π/2, π, 3π/2, 2π the
atom has been transferred from K|2〉 into (K |1〉 + K |2〉)/

√
2, K|1〉, (K |1〉 − K |2〉)/

√
2

and back to K|2〉, which corresponds to a 0, π/2, π, 3π/2 and 2π rotation of the sphere
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Figure 3.4: Radio frequency spectroscopy of the K|2〉-K|1〉 transition. Illustration
of the frequency dependent transfer amplitude A(ν) after K|2〉 is transferred into K|1〉
by a Blackman shaped probe pulse of width σRF. The green rectangles show single
measurements in which the probe pulse frequency is varied from ν1 to νn and their
corresponding averaged transfer amplitudes are indicated as green circles. The red
solid and black dashed lines depict the spectral response as K is transferred from an
initially non-interacting into an interacting K|1〉Li|1〉 and a non-interacting K|1〉 system,
respectively. The former shows a doubly peaked signal consisting of two contributions
centered around the frequencies νp and νres, representing the combination of a sharp
quasiparticle-like excitation and a broad background, respectively.

around the v-axis. However, as a finite detuning is introduced an additional rotation
of the u-axis guides the Bloch vector on another path on the sphere’s surface, which
cannot reach the maximum transfer amplitude. The black solid and green dashed lines
show the corresponding evolution of the population in units of Ω0τRF in the case of a
resonant ∆ν = 0 and an off-resonant ∆ν = Ω0/2 driving field. It is clearly visible that,
with non-zero detuning, the transfer amplitude is decreased and the Rabi frequency
increased. The orange dash-dotted curve is added for completion and pictures the sit-
uation as a decoherent process of the upper state is introduced Γ 6= 0. In this case the
absolute value of the Bloch vector shrinks in time, while the vector rotates around the
v-axis until the system is fully decohered. In this case the excitation probability is 0.5.
In an experiment it is convenient to define a reference pulse in a well-known scenario.
Here, this corresponds to the case of ∆ν = 0, Γ = 0 and Ω0 = τRF, which represents
the π-pulse condition. Note that the discussion of the Bloch sphere in this thesis is
limited to the specific applications in the FeLiKx experiment. Other cases and detailed
discussions can be obtain e.g. from Ref. [Tan].

In order to understand a standard spectroscopic measurement in the FeLiKx experiment,
consider a Blackman pulse fulfilling the π-pulse condition being applied to an atomic
sample initially prepared as a non-interacting mixture of atoms in the state K|2〉. The
magnetic field is adjusted to the vicinity of a FR between K|1〉 and Li|1〉. The aim
of this measurement is to transfer K|2〉 into K|1〉 and find the resonance νres where
maximum transfer occurs by varying the frequency of the RF pulse. Such a scenario is
depicted in Fig. 3.4. The black dashed line illustrates the transferred fraction NK1/NK2
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in dependence of νRF for the reference π-pulse. At resonance ∆ν = νRF − νres = 0

the atoms are fully transferred into K|1〉. For finite detuning, as discussed in Fig. 3.3,
the transfer amplitude decreases. However, as Li is added to the sample the situation
gets more complex. Since the final state is a strongly interacting mixture of Li|1〉 and
K|1〉 the spectrum undergoes interaction-induced shifts and new states, e.g. molecular
states, can appear. In order to investigate this we use RF spectroscopy. The green
rectangles in Figure 3.4 symbolize single measurements and the corresponding green
circles show the transferred amplitude obtained for different radio frequencies from ν1

to νn. The duration of the RF pulse is chosen such that its width is smaller than the
estimated smallest structure in the final spectrum σRF < σ0 to make sure that the
resolution is sufficient. As all n measurements are conducted, the green circles represent
a discretized version of the full spectrum. An interpolation of these points is illustrated
by the red solid line. In order to determine the effect of strong interactions on the K|1〉
energy, the two measurements (red solid and black dashed lines) can now be compared.
It is evident that the resonance frequency of a particle like respond shifted towards
lower frequencies νp < νres and a broad background signal, centered around the initial
resonance frequency, appeared. For detailed physical interpretations of such spectra see
Ch. 4 and Ch. 8. The vast difference between these two measurements emphasizes the
power of RF spectroscopy. As the two spectra are compared, models can be applied,
physical quantities that describe the underlying processes can be extracted. Therefore
novel and exotic systems, even in many-body physics, where theoretical predictions are
sparse, can be investigated, described and eventually understood.

However, it is important to consider that in an experiment an RF pulse has a finite
duration, hence, the Fourier transformed signal cannot be monochromatic, but rather
shows a broad spectral feature as illustrated in Fig. 3.2. When applied to the atoms, the
finite width leads to an averaged signal over the span σRF, as indicated by the green boxes
in Fig. 3.4. Therefore, eventual smaller structures in the spectrum cannot be resolved.
One could assume that applying a very long pulse with a corresponding small width
would solve this problem. However, at longer time scales atom-loss processes can play
an increasingly important role. Therefore, in ultracold-atom experiments, the adjusted
pulse duration is a compromise between losses and spectral resolution. Furthermore,
interacting systems can posses meta-stable states, which decay into the ground state
after some time. Both scenarios, the excited-state and the ground state spectrum can
be of interest, which is why spectroscopic methods can be divided into two principal
approaches, called injection and ejection spectroscopy. The former, discussed in the text
above, presents a possibility to probe fast-decaying metastable states. The atoms are
prepared in a known reference state and get injected into the state of interest. If the
RF pulse is short enough possible excited states can be detected. The other type of
spectroscopy implies an initial preparation of the atomic sample in the state that is to
be probed, following an ejection of the particles, via RF transfer, into the reference state.
In this case, any excited states can decay into the corresponding ground states and an
equilibrium state can be probed. Note that the topic of RF spectroscopy comprises
many different methods which have a tremendous range of applications. So far, the
rather simple case of a one-pulse spectroscopy, with π-pulse condition, was discussed.
However many other methods, such as Rabi-oscillation measurements [Ket99, Ket08],
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Ramsey spectrsocopy (see e.g. Ch. 4), or spin-echo spectroscopy (see e.g. [Cet15]) are
also popularly used in ultracold-atom experiments.

3.2 The polaron

In the 1940s, when Solomon I. Pekar and Lev D. Landau studied the motion of an elec-
tron in a crystal, they showed that an electron of the conduction band polarizes the sur-
rounding crystal of atomic cores. They termed this dressed electron as polaron [Lan48].
In experiments that use ultracold atoms to simulate such condensed matter systems,
the polaron is represented by an impurity atom that dresses itself with the fundamental
excitations of the surrounding medium. In this Section, the properties of a polaron, its
spectrum, and different types of polarons are discussed. The main focus of attention
lies on the specific situation where a small dilute sample of K atoms is immersed in a
large Li Fermi sea. In addition, a brief theoretical summary of the two commonly used
methods for describing Fermi polarons is presented. Finally, other system configurations
and the limitations of Fermi liquid theory are discussed.

3.2.1 Properties of a polaron

A polaron is a quasiparticle occurring in many-body systems in the presence of interac-
tions between two (or more) different types of particles, differing in at least one quantum
number. One further important ingredient is the strong population imbalance with the
limiting case containing one impurity in an infinitely large environment (thermodynamic
limit). Such a scenario is not achievable experimentally, but can be approximated by
a few impurities to be considered non-interacting, and a relatively large environment.
The low-energy excitations of the latter define the classification of the polaron. In the
case where the majority species is represented by a BEC or a degenerate Fermi gas,
the quasiparticle is called a Bose or Fermi polaron, respectively4. In either case, as
inter-particle interactions are introduced to such a system, the minority species will still
have its intrinsic properties, however, the single atoms will dress themselves with the
low-energy excitations of the surrounding medium. Therefore physical quantities such
as energy, mobility and mass of the particle are renormalized and the system can be
described in terms of quasiparticles moving through the surrounding.

The spectrum of a strongly population-imbalanced system typically exhibits three main
branches that correspond to the three states an impurity can occupy, the attractive
(I) and repulsive (III) polaron as well as the molecule (II). Figure 3.5 illustrates the
spectral response of a 41K impurity5 immersed in a 6Li Fermi sea in the regime of strong
inter-particle interactions −1 < X < 1 (see Tab. 3.1). The solid and dashed lines depict

4Note that the collective excitations of a crystal lattice are described by phonons, which are bosons.
In this case it does not matter whether the particles building the lattice are bosons or fermions. As an
impurity is introduced to this scenario it is described by a Bose polaron.

5The quantum statistics of the impurity does not play a role in this picture, since the calculations
are carried out for a single impurity. The difference w.r.t. the 6Li-40K spectrum is simply given by the
narrowness of the FR.
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Figure 3.5: Illustration of the spectral response of a Fermi polaron following the
example of 6Li41K in the vicinity of a Feshbach resonance between Li|1〉 and K|2〉
around B0 ≈ 335G (see Ch. 8). An impurity that is strongly interacting with the
surrounding Fermi sea can occupy one of three states. The respective energy curves
are depicted as two green solid lines and one dashed line. The repulsive and attractive
polaron are represented by the energy curves E+ and E−, respectively. The dashed
green line depicts the binding energy of the dressed molecules, which presents the ground
state of the system for X . 0.2 and a lower bound for the molecule-hole continuum
(shaded region). As an energy reference the binding energy for dimers in vacuum is
inserted as the black dotted line. Due to the lack of the Fermi sea, it is shifted with
respect to zero by the Fermi energy.

the dependence of the impurity energy on the interaction strength as it occupies one of
the three states. The ground state of the system is given by the attractive polaron (I)
with energy E−, in the regime of attractive inter-particle interaction. Here, the particle
of the minority species deforms the Fermi sea by attracting Li atoms. This process
lowers the energy of the now dressed impurity with respect to the energy of the bare
impurity. At an interaction strength of about X ≈ 0.2 the energetically lowest state of
the system is represented by a molecular state (II). A Li and a K atom form a dimer by
scattering off of a particle-hole excitation. The binding energy Emol is increasing with
decreasing X. The point in the spectrum at which the ground state changes from an
attractive polaron to a dimer is dependent on the properties of the FR as mentioned in
Sec. 3.1.1. In the case of very narrow resonances kFR∗ � 1, this state can persist to
be energetically favourable with respect to the molecular state even in the presence of
strong repulsive inter-particle interactions [Mas12]. However, in the region X < 0 exists
a meta-stable excited state, the repulsive polaron (III), from which the atoms can decay
to the energetically lower-lying attractive, or molecular state. Atoms in state (III) repel
the surrounding Li atoms and have an effectively higher energy. The shaded region in
between the three previously defined states marks the molecule-hole continuum (MHC).
It arises from the fact that a repulsive polaron can decay to the molecular state by
exciting a particle hole excitation from energies between 0 − EF out of the Fermi sea.
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Therefore the MHC exists in a region of energies between Emol and Emol + EF. The
dotted black line represents the binding energy of a dimer in vaccum Eb,vac. The energy
shift of −EF takes into account the missing Fermi sea. In this picture the shift of the
resonance, due to the narrowness of the resonance and the mass imbalance of the two
species, becomes apparent. For details on the resonance shift and the position of the
molecule-polaron crossing I refer the reader to Ref. [Mas12].

The green vertical line in Fig. 3.5 at X = 0 marks the interaction strength for which an
example RF-injection spectrum is shown. This sketch shows a peak at Epol = E+ on
top of a broad background signal that is centered in the region of negative energies. At
Epol = E− is another slight increase of the RF signal. The spectrum shows a repulsive
polaron (III) and the MHC with a hint of the attractive polaron in (I)+(II). Note that
the wave function of the molecular state has less overlap with the non-interacting wave
function than any of the two polarons. For this reason, the atom transfer is more
efficient for the latter and appear as the dominant peaks. This overlap is dependent on
the interaction strength and commonly called the quasiparticle residue Z. The width of
the repulsive polaron peak gives an indication of its decoherence rate (see [Sca17] and
Ch. 8), which increases as the center of the FR is approached. The repulsive polaron is
well-defined if its spectral width is much smaller than the inverse of its lifetime.

I have discussed the spectrum and properties of a Fermi polaron in the case of a mass
imbalance of ∼ 6/41. However, the spectrum can change drastically if slightly different
systems are considered. If e.g. the impurity mass would be increased possible few-body
effects could appear [Efi70, Chi10] and, in the case of m → ∞, exotic states as e.g.
the orthogonality catastrophe [And67, Kna12, Sch18] could be observed. A radical dif-
ferent system is described by the Bose polaron [Frö54, Hu16, Jør16], in which bosonic
atoms form a Bose-Einstein condensate and represent the majority species. In such a
system a fermion or another boson is inserted as an impurity, which dresses itself with
the Bogoliubov excitations of the BEC. However, all these systems have one common
conundrum: They are described by theories that make perturbative assumptions and,
surprisingly, are valid even for very complex many-body domains such as strong inter-
actions, high impurity densities, and increased impurity temperatures/momenta. The
borders of these theoretical approaches are not yet exhausted and their breakdown is
still under active experimental investigation.

3.2.2 Theoretical treatment

Quantum simulators, such as the one used to conduct the experiments presented in this
thesis, were developed to simulate complex problems that cannot be solved by current
state of the art technologies. This, however, also indicates that a theoretical description
of the underlying problem is extremely challenging, if not impossible. For this reason,
theoretical studies rely on good approximations, which help to simplify the system and
enable physicists to find numerical or even analytical solutions for certain parts of a
complex problem. The field of polaron physics started with the complex problem of
charge transport of an electron in a crystal lattice. The electron was considered as a
single impurity that is immersed in, and interacting with, a big fermionic environment
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of atomic cores. Landau and Pekar [Lan33, Lan48] described this complex scenario such
that the fermionic impurity dresses itself with basic excitations of a Fermi sea, which
are described as particle-hole excitations [Pit16]. From this thought, the systems wave
function was derived

|Ψ〉 = (Φ0a
†
k=0↓ +

∑
q,k

Φq,ka
†
q−k↓a

†
k↑aq↑+ (3.7)

+
∑

q,q′,k,k′
Φq,q′,k,k′a

†
q′+q−k−k′↓a

†
k↑a
†
k′↑aq↑aq′↑ + ...) |FS〉 , (3.8)

where ap,σ and a†p,σ describe the annihilation and creation operators of a particle in state
σ =↑, ↓ with momentum p. Note that the states ↑, ↓ represent the majority and minority
species, respectively. The coefficients Φα are to be calculated. The first term in Eq.(3.7)
shows an impurity with momentum k = 0 that is immersed in an unperturbed Fermi
sea |FS〉. Note that the annihilation of a particle can also be viewed as the creation
of a hole. Therefore, the second term can be interpreted as the creation of a particle
and a hole with momentum k and q, respectively, that are scattering off an impurity
with momentum q-k. The following terms in Eq.(3.7) describe processes where multiple
particle-hole excitations are considered. Another characteristic quantity of polarons,
originating from Landau’s celebrated Fermi-liquid theory, is the quasi-particle residue
Z, which describes the overlap between the initial wave function of the impurity and
the perturbed wave function of the polaron. This value turns out to be related to the
coefficient of (3.7) by

√
Z = Φ0. The initial state and the perturbed state posses the

energies E = p2/(2m) and E∗ = p2/(2m∗) with m∗ being the effective mass arising from
the renormalization of the bare particle [Lan48].

There exist two different commonly used approaches to calculate the ground state en-
ergy of such an interacting many-body system6. One of them is called the variational
method, which in the context of polarons was introduced by F. Chevy [Che06] and the
other one is called the T-matrix approximation [Com07] (or froward-scattering method,
or diagrammatic approach). For the first, one has to guess a trial wave function, plug it
into the Schrödinger equation and minimize the resulting Eigenvalues by varying certain
parameters. If the wave function is approximated correctly, the resulting values present
a good match with the real ground state of the system. Note that an excellent intuition
is necessary in order to apply this method, where experimental findings represent an
essential contribution to the finding of theoretical predictions. The drawback of this
method is that obtaining excited state solutions, as e.g. the repulsive polaron, is intrin-
sically hard, because the method is developed to find the ground state of the system.
However, it turned our that the T-matrix approach provides excellent agreement with
the variational method and in contrast to the latter, it allows to predict the excited
state and the decay rates of the system. Furthermore, it presents a possibility to include
eventual finite impurity concentration and temperature.

6Note that in the limit of weak interactions the situation is well described by a mean-field calculation.
In such a picture the many-body problem can be reduced to a single-body problem by considering the
environment as an averaged global interaction.
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The following calculations using the variational Ansatz, or Chevy Ansatz, is leaned on
Ref. [Che06]. First, one establishes a trial wave function of the form

|Ψ〉 = Φ0a
†
0↓ |FS〉+

∑
q<kF<k

Φq,ka
†
q−k↓a

†
k↑aq↑ |FS〉 , (3.9)

in which only one particle-hole excitation is considered. The summation is executed
for all momenta q < kF and k > kF, which assures that a hole is generated within the
Fermi sea and the corresponding particle lies outside. The Hamiltonian of the system
Ĥ = Ĥ0 + V̂ consists of the non-perturbed energy of the impurity and the Fermi sea Ĥ0

and an additional term that describes their interaction V̂ . In order to find the ground
state of the system one can minimize the expectation value of the total energy with
respect to the coefficients in Eq. (3.9) as

δ 〈Ψ| Ĥ − E |Ψ〉
δΦ∗0

= 0, (3.10)

δ 〈Ψ| Ĥ − E |Ψ〉
δΦ∗q,k

= 0, (3.11)

with E being the Lagrange multiplier, which in this case can be interpreted as the energy
of the ground state. Eliminating the two coefficients Φ0 and Φq,k one can then obtain
the final equation

E =
∑
q<kF

1∑
k>kF

( 1
εk+εq−k−εq−E −

1
2εk

)−
∑
k<kF

1
2εk

, (3.12)

in which the energies of the hole, the particle and the impurity are labeled εq, εk, and
εq−k, respectively and the term

∑
k

1/(2εk) stems from the Lippman Schwinger equation.

The solution of this self-consistent equation represents the ground state energy of the
system. More detailed calculations of the Chevy Ansatz and Eq. (3.12) can be found in
Ref. [Che06]. Note that these particular rather straight-forward calculations are valid
only in the case of a broad resonance. It is presented here to illustrate the principal
idea of the Ansatz. An extension to narrow resonances is given in Ref. [Tre12]. Since
the variational Ansatz relies on the precise knowledge of the system in order to guess a
right wave function, the calculated ground state energies represent an upper border for
the real system. For completness I want to mention that there exists also the dimeron
Ansatz, which is used to calculate the energy of the dimer (see Emol in Fig. 3.5) within
the variational approach throughout various interaction strengths. The only difference
with respect to the Chevy-Ansatz is the truncation of the wave function [Com07, Lan14].

In order to calculate the excited state energy and its lifetime, another approach, the T -
matrix approximation, is commonly utilized in the field of Fermi polarons. This method
relies on the knowledge of the self-energy Σ(p, E) of an impurity particle with momen-
tum p and energy E, which can be viewed as the change of the impurities energy, or
effective mass, due to the effects of interaction with its surrounding. In other words, the
self energy Σ describes a single-particle state that is renormalized by the surrounding
many-body system, which corresponds here to the impurity, dressed by its fermionic
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environment. The self-energy is a complex quantitiy whose real and imaginary parts,
considered individually, contain information about the quasiparticle. Its derivation is
described in detail in [Mas14] and Chapter 8 and relies on the knowledge of the Greens
function, which itself gives rise to the spectral function of the system. In order to high-
light the importance of the self-energy, the resulting dependencies of polaron properties
shall be repeated here:

E± = Re[Σ(0, E±)], (3.13)

Z± = [1− δωΣ(0, E)|E± ]−1, (3.14)

m∗± =
m↓
Z±

[
1 +

δRe[σ(p, E±)]

δ(εp,↓)

]−1

, (3.15)

Γpp = −2Z+Im[Σ(0, E+)]. (3.16)

In order to obtain the energies of the zero-momentum repulsive (+) and attractive (-)
polaron, respectively, the self-consistent equation (3.13), which results from extracting
the pole of the Greens function, must be solved. With the aid of these quantities the
corresponding quasi-particle residues may be calculated in Eq. (3.14). Knowing the
residue and the energy, the effective mass of the dressed impurity is given by Eq. (3.15).
Finally, since the repulsive polaron is a metastable state and will therefore decay, its
rate Γpp to decay into the attractive polaron is given in Eq. (3.16).

So it all boils down to the cumbersome calculation of self-energy, which is explained in
many textbooks such as e.g. [Abr75] and shall not be further elaborated in this thesis.
However, with the aid of Feynman diagrams one can truncate the Greens function (see
e.g. Ref. [Mat92]) in a way that only single particle-hole excitations are considered.
This approach was, in the context of Fermi polarons, introduced in Ref. [Com07] and is
equivalent to the variational Ansatz explained above. Since the T -matrix approximation
relies on the summation of certain Feynman diagrams it is also called the diagrammatic
method or, due to the fact that the diagrams are added step wise, the ladder (diagram)
approximation.

One intriguing feature of both the variational Ansatz and the T -matrix approximation
is that despite the seemingly heavy truncation of the wave function and the propagator
by only considering a single-particle hole excitation, the description is accurate even in
the vicinity of strong inter-particle interactions. It agrees very well with experimental
findings (see e.g. Ch.4 and 8). In the context of Fermi polarons, the two methods
were compared to quantum Monte Carlo calculations [Lob06] and showed remarkable
agreement.

3.2.3 Beyond Fermi-liquid theory

In the previous Sections, the basic description of a Fermi polaron is given, which hope-
fully answers many questions, but also raises a few. In order to not repeat the many
excellent reviews about quasiparticles and their properties, in this subsection I state
some questions that arise when working with Fermi polarons and I give rather intuitive
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and hand-waving answers. For further reading I refer to the respective experimental and
theoretical publications.

What is the role of the impurity mass in the Fermi polaron picture?

If we consider a single impurity that is immersed in a degenerate gas of majority atoms,
we intuitively know that as the impurity mass changes, the scattering properties of the
system will change as well. It directly influences the polaron energy and therefore also
all other properties. In a hand-waving picture one could argue that a light atom will
feel more impact from a collision, compared to a heavy one, and therefore the influence
on the energy and effective mass of the polaron will be bigger if the impurity mass is
small. Furthermore, the ground state of the system is strongly dependent on the mass
ratio between the majority and minority species. In the case of a light impurity atom,
the ground state can take exotic forms. Besides the attractive polaron and a dressed
molecule it could evolve to a dressed dimer or even to the long sought dimer with non-zero
momentum (FFLO) [Mat11, Mas14]. Experimentally, it is difficult to achieve relatively
low impurity masses, if the surrounding is represented by a Fermi sea. The reason lies
in the possible choice of atomic species. The only stable fermionic isotopes in the alkali
family are 6Li and 40K. The latter has a very low natural abundance and is therefore a
more suitable candidate for the impurity in a two-species experiment. However, within
the last years new experiments involving Er or Dy where proven to be operable. They
would bring suitable masses for the environment, but at the same time introduce new
complications. These species have a high magnetic dipole moment, and the question of
how long-range interactions, which deform the Fermi surface [Aik14], alter the polaron
picture has not yet been resolved [DO19, Bom19, Nis21, Kai14, Wen18].

A massive impurity, on the other hand, will be less perturbed by the Fermi sea and the
ground state of the system will be the dressed dimer for most values of the interaction
strengths [Mas12]. An example is presented in Fig. 3.5 for a mass ratio of mLi/mK =

6/41. However, the limiting case of infinite impurity mass holds exciting states. An
impurity with infinite mass is not only a theoretical construct, but can be experimentally
realized by pinning down one species with the aid of a species-selective potential. The
fact that the atoms cannot move due to their tight optical confinement is equivalent to
an infinite-mass scattering partner. If such a scenario is realized at zero temperature
in the thermodynamic limit (N↑ → ∞), the orthogonality catastrophe [And67, Kna12,
Sch18] is predicted to occur. Then, in a finite amount of time, the system will become
orthogonal, or in other words the wave-function overlap of the initial and the final state
is zero. This puzzling phenomenon indicating a complete loss of memory of the system
is not yet experimentally observed, due to the very challenging setup that is necessary.
Two main ingredients are an infinite-mass impurity and a zero temperature sample,
where the latter is the factor that prevented the FeLiKx-team from observing it.

What is the role of quantum statistics of the majority and minority atoms?

As already briefly mentioned in Sec. 3.2.1 the polarons can be divided into two classes
according to the fundamental nature of their surroundings, the Bose and the Fermi
polaron. The latter is the main topic of this thesis and was therefore introduced, so let
us consider the differences with respect to the former. The basic collective excitations in a
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BEC are described by Bogoliubov excitations and represent the dressing of the impurity.
Reference [Gru15] presents a wonderful overview of common theretical approaches to
describe the Bose polaron. From the point of view of an experimentalist, ultracold
bosons are in general more difficult to generate than ultracold fermions due to three-
body loss. Most bosonic species are operated at a certain magnetic field to keep the
background-scattering length at a desired value with the aid of FRs. If this is achieved,
a suitable FR between the minority and majority species must be found in order to tune
the scattering length and observe a spectrum. Another important difference between
the Fermi and Bose systems is that the latter, due to its two orders of magnitude
higher density, is subject to the miscibility-immiscibility problem [Bie16]. For repulsive
inter-particle interactions the BEC can undergo a phase separation with the second
species (see Ch. 7 and 6) whereas for attractive interactions the collapse of the BEC
[Osp06b, Zac06] can lead to additional fast particle loss. Despite these difficulties, the
first experimental observations of the Bose polaron were presented in 2016 [Hu16, Jør16].
The Bose-polarons problem is far from being solved and many predictions are still to be
experimentally verified, as the orthogonality catastrophe [Mis19], bi-polarons [Cam18b],
or the famous Efimov resonances [Lev15b].

Since the minority species is theoretically considered as a single impurity, the question of
its quantum statistics is rather superfluous. However, in experiments typical concentra-
tions are on the order of ∼ 20% and temperatures are so low that even small numbers
of bosons and fermions can lead to the occurence of Bose-Einstein condensation and
formation of a degenerate Fermi gas, respectively. In this case, impurity-impurity or
mediated interactions will differ depending on the fundamental nature of the particles.
Furthermore, the interaction between dimers and their environment changes. In princi-
ple one can generate Bose-Bose, Fermi-Fermi and Fermi-Bose mixtures. In the first two
cases the dimer state is bosonic. The latter of the two may have suppressed collision
rates because the constituents are still subject to the Pauli exclusion principle. The third
possible mixture will contain less reactive fermionic dimers [Mar19, Zel19] and may even
form a Fermi sea (see also Ch. 4). Note that these effects only occur at sufficiently high
impurity concentrations.

What is the role of the system dimension?

It is well known that one-, two- and three-dimensional systems cannot be treated in
the same way and have different effects under similar conditions, see e.g. [Pit16]. One
way to look at this fact is that the density of states decreases as the dimensionality of
the system is reduced. It follows that quantum and thermal fluctuations will have an
increasing effect in the physics involved, since they will destroy the long-range order in
1D and 2D systems at zero temperature. This affects the occurrence of phase transitions,
which promotes the emergence of exotic states such as the fractional quantum Hall effect
[Lau98] or superconducting nanowires [Sch00].

Considering Fermi polaron physics, its theoretical basis is given by Landau’s Fermi
liquid theory, which is a valid assumption only in three and two dimensions [Mas14,
Sar21]. In one dimension the Fermi liquid picture breaks down and the situation is
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described by a non-Fermi liquid, the Luttinger liquid [Lut63]7. The first experimental
observation of the polaron in two dimensions is presented in Ref. [Kos12] and theoretical
calculations in Refs. [Par11, Zöl11]. The one-dimensional case was treated theoretically
in [Gir09, Les10]. A summary of calculations of the spectral function of polarons with
finite temperature and concentration in 1D, 2D and 3D can be found in [Taj21]. Note
that recently, the polaron with atoms from the lanthanide series has been experimentally
studied in Ref. [DO19]. Corresponding theoretical predictions can be found in [Xu18,
Den18, Che18].

How does the polaron evolve in time?

In order to answer this question one has to view the timescales of the system. The fastest
possible time scale of a zero temperature Fermi sea is given by the Fermi time τF = ~/EF

since it origins from particles with the highest possible energy. Many processes like few-
body physics, temperature and density induced effects, and dephasing, depend strongly
on the considered system. However, in order to see such effects, the system must be
probed accordingly fast. Typical Fermi times are on the order of a view µs, which
implies that excitation schemes faster than this must be applied. One example of such a
measurement is presented in Ch. 4, where the FeLiKx team was able to observe the birth
and subsequent decay of the Fermi polaron, by measuring its contrast, using Ramsey-
interferometric techniques. A time resolved measurement in addition to a spectrum,
such as the one shown in Fig. 3.5, can give further information about the coherence of
the system and is more suitable to resolve fast dynamics. For an excellent overview on
the temporal evolution of heavy impurities in a Fermi sea, see Ref. [Sch18].

What are the limits of the single particle-hole (SPH) description?

The temperature T and the concentration C = n1/n2, defined here as the density ra-
tio of the atoms occupying the states |1〉 and |2〉, are currently under theoretical and
experimental investigation. It is not fully understood how they influence the single
particle-hole approximation, at what point it will break down, and how the system can
be described in the transitional region. The lower limits of temperature and density
(T, C → 0) are well described by the SPH description. In the limit, in which the temper-
ature exceeds the Fermi temperature T � TF the majority species is rather described by
a Boltzman gas than a Fermi sea and will not form polarons. The connection between
the two limits is an open question and is tackled by theorists and experimentalists. The
influence of the temperature of the majority species was experimentally [Yan19, Nes20]
and theoretically [Hu18, Taj19, Mul19, Fra10] investigated recently. Interestingly, for
Bose polarons, theories predict three-body states even in the limit of high temperatures.
Also in this scenario the transitional behavior around the critical temperature for the
condensation of the Bose gas could be theoretically described [Sun17, Gue18, Fie20,
Dzs20]. However, this was not verified experimentally up to now.

7An intuitive picture about the two models and their validity can be obtained from Ref. [Gia04] and
references therein.
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Figure 3.6: Illustration of a Fermi-Fermi, Fermi-Bose, and Bose-Bose mixture for
three different concentration regimes and strong repulsive (a � 0) and attractive
(a� 0) inter-particle interactions. Green and blue circles represent fermions, whereas
red and purple circles represent bosons. from left to right the concentration is increased
and from top to bottom the system changes from two fermionic, to a fermioic and a
bosonic, and finally to two bosonic components. Colorful backgrounds indicate the
degenerate majority component of the respective mixture. Panels (a1),(a3,(b1) picture
the repulsive and attractive Fermi polarons, which are indicated by repelling and at-
tracting the surrounding medium. A possible dimer state is indicated in the bottom
of the panel. The illustration of the repulsive and attractive Bose polaron in panels
(b3),(c1),(c3) is chosen differently in order to emphasize that the environment is a BEC,
in conrtrast to a Fermi sea. The second column depicts the corresponding population
balanced mixtures, in which the components have equal densities. In (a2) two fermions
will form a molecular BEC and loosely bound halo-states for positive and negative scat-
tering lengths, respectively. The panel (c2) illustrates two condensed Bose gases, which
are either in a phase separated or miscible state. The central panel (b2) represents the
strongly interacting, balanced Fermi-Bose mixture. It illustrates a thermal Bose gas, in
which the interaction leads to the formation of Fermi polarons and eventual sequential
decay into molecules. The question mark indicates further unexplored processes, as
mentioned in the main text. First experimental observations for the different regimes
in references [Sch09, Koh12] for (a1) and (a3), [Reg04, Bar04a, Zwi04] for (a2), Ch. 8
for (b1) and (b2), [Hu16] for (b3), [Jør16] for (c1) and (c3), and [Pap08] for (c2).

What is the role of the impurities concentration in the polaron picture?

Just as high temperature, a finite impurity concentration will also provoke the break
down of the single-particle hole approximation. However for different mixtures of atomic
species the situation looks drastically different. In order to simplify this picture I shall
discuss the case of a Fermi-Fermi (FF), a Bose-Bose (BB) and a Fermi-Bose (FB) mixture
for the cases C → 0, C = 1, C → ∞, as depicted in the three columns of Fig. 3.6. Note
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that I will not go into detail of the wealth of physical effects that can occur in each
system, but rather follow an explanation from the point of the occurrence of polarons.
The left and right columns of the respective panels illustrate the mixtures for strong
repulsive and strong attractive interactions. In the first case of a single impurity in |1〉 a
repulsive and an attractive Fermi/Fermi/Bose polaron will form in the FF/FB/BB case,
as depicted in (a1)/(b1)/(c1). The other limiting case where only one atom occupies
state |2〉 presents an inverted situation where the former minority, becomes the majority
component of the system and a repulsive and an attractive Fermi/Bose/Bose polaron
will form in the FF/FB/BB case, as shown in (a3)/(b3)/(c3). The intermediate cases
C = 1 of the FF mixture (a2) shows the emergence a molecular BEC and Cooper pairs.
The behavior of two-component Fermi mixtures at strong interactions is described by
the famous BEC-BCS crossover as elaborated in the excellent review in Ref. [Ket08].
Note that in the case of repulsive interactions, effects such as itinerant ferromagnetism
are predicted [Jo09, Mas11, Mas14], but not yet observed [San12, Val17]. The equal
mixture of bosons (c2), here assumed to be two condensed clouds, can lead to two
different scenarios, depending on their intra-particle interaction strength [Pap08]. Either
the system phase separates and the two spatially separated components show reduced
three-body losses (see Ch. 6 and Ch. 7), or the system mixes. The same effects appear as
well for attractive interactions. However, in this case the mean field collapse will lead to
strongly enhanced loss (indicated by the yellow lightning symbol). The last scenario (b2)
is until now largely unexplored. If the density of the bosons in a FB system is increased
to be equal to the density of the fermions, the situation of a mixture of thermal bosons
and degenerate fermions is realized. Since the densities are equal, we do not expect
phase separation to happen. Furthermore, since dimer states are fermionic, we do not
expect any BCS pairing or a molecular BEC to occur. Therefore we assume that Fermi
polarons will form, since the bosons are not condensed. At this stage, however, mediated
interactions can no longer be neglected.

As one approaches states of intermediate concentrations 0 < C < 1, induced interactions,
one component mediates the interaction between particles of the second component, can
evolve and change the behavior of the system dramatically. For increased boson density,
with respect to the other component, exotic few-body states and interacting polarons
that can even lead to a bound polaronic state, the bipolaron [Ran06], are predicted to
occur. Furthermore, Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions have been
observed [Edr20]. In the FF case the early measurements presented in Ref. [Zwi06b]
and later in [Sca17] show the influence of the minority concentration in a FF, w.r.t. the
BEC-BCS crossover and w.r.t. the polaron energy. However, mediated interactions or
polaron-polaron interactions in Fermi-Bose systems have not yet been observed, but first
indications on the influence were seen in [Yan20b] where observations towards boson
induced hydrodynamic behavior in single component Fermi gases were made and in
Ch. 8 where observations towards the transition from a Fermi to a Bose polaron were
made.
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4.1 Abstract

The fastest possible collective response of a quantum many-body system is related to its
excitations at the highest possible energy. In condensed matter systems, the time scale
for such “ultrafast” processes is typically set by the Fermi energy. Taking advantage of
fast and precise control of interactions between ultracold atoms, we observed nonequi-
librium dynamics of impurities coupled to an atomic Fermi sea. Our interferometric
measurements track the nonperturbative quantum evolution of a fermionic many-body
system, revealing in real time the formation dynamics of quasi-particles and the quan-
tum interference between attractive and repulsive states throughout the full depth of
the Fermi sea. Ultrafast time-domain methods applied to strongly interacting quantum
gases enable the study of the dynamics of quantum matter under extreme nonequilibrium
conditions.

4.2 Introduction

The nonequilibrium dynamics of fermionic systems is at the heart of many problems in
science and technology. The wide range of energy scales, spanning the low energies of
excitations near the Fermi surface up to high energies of excitations from deep within the
Fermi sea, challenges our understanding of the quantum dynamics in such fundamental
systems. The Fermi energy EF sets the shortest response time for the collective response
of a fermionic many-body system through the Fermi time τF = ~/EF , where ~ is the
Planck constant divided by 2π. In a metal (i.e., a Fermi sea of electrons), EF is in the
range of a few electron volts, which corresponds to τF on the order of 100 attoseconds.
Dynamics in condensed matter systems on this time scale can be recorded by attosecond
streaking techniques [Kra09], and the initial applications were demonstrated by probing
photoelectron emission from a surface [Paz15]. However, despite these advances, the
direct observation of the coherent evolution of a fermionic many-body system on the
Fermi time scale has remained beyond reach.
In atomic quantum gases, the fermions are much heavier and the densities far lower,
which brings τF into the experimentally accessible range of typically a few microsec-
onds. Furthermore, the powerful techniques of atom interferometry [Cro09] now offer
an opportunity to probe and manipulate the real-time coherent evolution of a fermionic
quantum many-body system. Such techniques have been successfully used to measure
bosonic Hanbury-Brown-Twiss correlations [Sim11], to demonstrate topological bands
[Ata13], to probe quantum and thermal fluctuations in low-dimensional condensates
[Gri12, Had06], and to measure demagnetization dynamics of a fermionic gas [Kos13,
Bar14]. Impurities coupled to a quantum gas provide a unique probe of the many-body
state [Sch09, Nas09, Koh12, Kos12, Zha12, Mas14, Sid17]. Strikingly, they allow direct
access to the system’s wave function when the internal states of the impurities are ma-
nipulated using a Ramsey atom-interferometric technique [Goo11, Kna12].
We used dilute 40K atoms in a 6Li Fermi sea to measure the response of the sea to
a suddenly introduced impurity. For near-resonant interactions, we observed coherent
quantum many-body dynamics involving the entire 6Li Fermi sea. We also observed in
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Figure 4.1: Illustration of the experimental setup and procedure. (A) Li (blue)
and K (red) atoms are held in a crossed-beam optical dipole trap, forming the Fermi
sea and the sample of impurity atoms, respectively. The magnetic field coils (gold)
are used to tune interactions via a Feshbach resonance, and the rf coil (black) allows
the manipulation of the spin state of the impurity atoms. (B) The Ramsey sequence
starts with a first rf π/2 pulse, which is applied in the presence of weak interactions
between the impurity atoms and the Fermi sea. As illustrated on the Bloch sphere,
this pulse drives an impurity atom (red dot) into a superposition of the spin states
K|2〉 and K|3〉. By optical resonance shifting (see text), the interaction of the K|3〉
component with the atoms of the Fermi sea (blue dots) is abruptly turned on while the
K|2〉 component remains noninteracting. The impurity state then evolves for a variable
interaction time, at the end of which its state is probed by a second π/2 pulse and
subsequent measurement of the spin-state populations.

real time the formation dynamics of the repulsive and attractive impurity quasiparticles.
In the limit of low impurity concentration, our experiments confirm that an elementary
Ramsey sequence is equivalent to linear-response frequency-domain spectroscopy. We
demonstrate that our time-domain approaches allow us to prepare, control, and measure
many-body interacting states.

4.3 Main results

Our system consists of a small sample of typically 1.5 × 104 40K impurity atoms im-
mersed in a Fermi sea of 3×105 6Li atoms ([Cet15] and Sec. 4.6). The mixture is held
in an optical dipole trap (Fig. 4.1A) at a temperature of T = 430nK after forced evap-
orative cooling. Because of the Li Fermi pressure, and because our optical potential for
K has more than twice the strength of that for Li, the K impurities are concentrated
in the central region of the large Li cloud. Here they experience a nearly homogeneous
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environment with an effective Fermi energy of εF = kB × 2.6µK (Sec. 4.6), where kB is
the Boltzmann constant. The corresponding Fermi time, τF = 2.9 µs, sets the natural
time scale for our experiments. The degeneracy of the Fermi sea is characterized by
kBT/εF ≈ 0.17. The concentration of K in the Li sea remains low, with n̄K/n̄Li ≈ 0.2,
where n̄Li is the average Li number density and n̄K is the average K number density
sampled by the K atoms (Sec. 4.6).
The interaction between the impurity atoms in the internal state K|3〉 (third-to-lowest
Zeeman sublevel) and the Li atoms (always kept in the lowest Zeeman sublevel) is con-
trolled using a rather narrow (Sec. 4.6) interspecies Feshbach resonance near a magnetic
field of 154.7G [Nai11, Cet15]. We quantify the interaction with the Fermi sea by the
dimensionless parameter X ≡ −1/κFa, where κF = ~−1

√
2mLiεF is the Li Fermi wave

number (with mLi the Li mass) and a is the s-wave interspecies scattering length. Slow
control of X is realized in a standard way by variations of the magnetic field, whereas
fast control is achieved using an optical resonance shifting technique [Cet15]. The latter
permits sudden changes of X by up to ±5 within τF /15 ≈ 200 ns.
Our interferometric probing method is based on a two-pulse Ramsey scheme (Fig. 4.1 (B)),
following the suggestions of [Goo11, Kna12]. The sequence starts with the impurity
atoms prepared in the spin state K|2〉 (second-to-lowest Zeeman sublevel), for which the
background interaction with the Fermi sea can be neglected. An initial radio-frequency
(rf) π/2 pulse, of duration 10µs, drives the K atoms into a coherent superposition
between this noninteracting initial state and the state K|3〉 under weakly interacting
conditions (interaction parameter X1 with |X1| ≈ 5). Using the optical resonance shift-
ing technique [Cet15], the system is then rapidly quenched into the strongly interacting
regime (|X| < 1). After an evolution time t, the system is quenched back into the regime
of weak interactions and a second π/2 pulse is applied. The population differenceN3−N2

in the two impurity states is measured as a function of the phase ϕ of the rf pulse. By
fitting a sine curve to the resulting signal (N3 −N2)/(N3 +N2), we obtain the contrast
|S(t)| and the phase ϕ(t) (Sec. 4.6), which yields the complex-valued Ramsey signal
S(t) = |S(t)| e−iϕ(t). In the limit of low impurity concentration and rapid quenching,
S(t) = 〈eiĤ0t/~e−iĤt/~〉 describes the sensitivity of the time evolution to perturbations
of the system. Here, the angle brackets denote the quantum statistical average, the
Hamiltonian Ĥ0 describes the noninteracting Fermi gas, and the interacting Hamilto-
nian Ĥ differs from Ĥ0 by the additional scattering between the Fermi sea atoms and
the impurity atoms. The function S(t), which for pure initial states is often referred to
as the Loschmidt amplitude [Los76], was introduced in the context of nuclear magnetic
resonance experiments [Hah50] and was also applied in the analysis of the orthogonality
catastrophe [Noz69] as well as in the study of quantum chaos [Jal01]. We first con-
sider the interaction conditions for which earlier experiments have demonstrated that
the spectral response is dominated by polaronic quasi-particles [Mas14]. Figure 4.2, A
to D, shows the evolution of the contrast and the phase measured in the repulsive and
the attractive polaron regimes, where X = −0.23(6) and X = +0.86(6), respectively.
For short evolution times up to ∼ 4τF, we observed that both contrast signals exhibit
a similar initial parabolic transient, which is typical of a Loschmidt echo [Jal01]. For
longer times, this connects to an exponential decay of the contrast and a linear evolution
of the phase. In [Cet15], we showed that the exponential decay of the contrast in this
regime can be interpreted in terms of quasiparticle scattering. Here, the linear phase
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Figure 4.2: Impurity dynamics in the Fermi sea. (A and C) Contrast |S(t)| and
phase ϕ(t) of the interference signal depending on the interaction time t in the repulsive
polaron regime for X = −0.23(6), with the rf pulse applied at X1 = −3.9. (B and D)
Same quantities in the attractive polaron regime for X = 0.86(6) and X1 = 5.8. (E and
F) Same quantities for resonant interactions (X = 0.08(5), X1 = 4.8). The solid blue
lines show the results of the TBM calculations. The solid red lines show the results
of the FDA calculations at the measured temperature; the dashed red lines show the
calculated results at zero temperature. The shaded regions indicate the uncertainty
range resulting from the combined experimental errors in X, kBT and εF . The errors
in the experimental data are typically smaller than the symbol size. The multiple
representation of ϕ(t) in (F) accounts for the ambiguity of a phase modulo 2π.

evolution corresponds to the energy shift of the quasiparticle state, for which we obtain
+0.29(1)εF for the repulsive case in Fig. 4.2C and −0.27(1)εF for the attractive case
in Fig. 4.2D. The longer-time behavior reflects the quasiparticle properties, whereas
the observed initial parabolic transient reveals the ultrafast real-time dynamics of the
quasiparticle formation.
On resonance, for the strongest possible interactions, a description of the dynamics in
terms of a single dominant quasiparticle excitation breaks down. In this regime, our
measurements—displayed in Fig. 4.2, E and F, for X = 0.08± 0.05—reveal the striking
quantum dynamics of an interacting fermionic system forced into a state far out of equi-
librium. The contrast |S(t)| shows pronounced oscillations reaching almost zero, which
indicates that the time-evolved state can become almost orthogonal to the initial state.
Meanwhile, the phase ϕ(t) exhibits plateaus with jumps of π near the contrast minima.
To further interpret our measurements, we used two different theoretical approaches:
the truncated basis method (TBM) (Sec. 4.6) and the functional determinant approach
(FDA) [Kna12]. The TBM models our full experimental procedure assuming zero tem-
perature and considering only single particle-hole excitations. This approximation, first
introduced in [Che06] to model the attractive polaron, was later applied to predict
repulsive quasi-particles in cold gases [Cui10]. The predictions of the TBM are rep-
resented by the blue lines in Fig. 4.2. This method accurately describes the initial
transient as well as the period of the oscillations of S(t) on resonance. Although the
zero-temperature TBM calculation naturally overestimates the contrast in the thermally
dominated regime (t > 6τF ), it accurately reproduces the observed linear phase evolu-
tion and thus the quasiparticle energy. The FDA is an exact solution for a fixed impurity
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Figure 4.3: Frequency-domain rf spectroscopy versus time-domain Ramsey spec-
troscopy. (A to C) The data points show the rf spectra for the repulsive (X =
−0.23 ± 0.06), attractive (X = 0.86 ± 0.06), and resonant (X = 0.08 ± 0.05) cases,
all normalized to unit integral. Here, ω corresponds to the detuning of the rf frequency
from the unperturbed transition frequency. The gray lines correspond to the Fourier
transform of the S(t) data from Fig. 4.2, with their widths indicating the standard
error resulting from the combined experimental uncertainties in the S(t) data. The red
and blue shading indicates the repulsive and attractive parts of the excitation spectrum,
respectively. (D) Diagram of the excitation energy versus the interaction parameter,
showing the repulsive (red) and the attractive (blue) quasiparticle branches. For il-
lustrative purposes, we model the spectrum by a calculation of the spectral function
together with additional broadening simulating the effects of finite rf pulse duration and
finite temperatures. The three vertical dotted lines indicate the interaction conditions
of (A) to (C).

at arbitrary temperatures, taking into account the nonperturbative creation of infinitely
many particle-hole pairs. The FDA calculation is represented by the solid red lines in
Fig. 4.2. We see excellent agreement with our experimental results, which indicates that
the effects of impurity motion remain small in our system. This observation can be ex-
plained by the fact that our impurity is sufficiently heavy so that the effects of its recoil
with energies of ∼ 0.25 εF are masked by thermal fluctuations. To identify the effect of
temperature, we performed a corresponding FDA calculation for T = 0; the results are
shown as dashed lines in Fig. 4.2. Here, we see a slower decay of |S(t)|, which follows
a power law at long times (Sec. 4.6) under the idealizing assumption of infinitely heavy
impurities.
Time-domain and frequency-domain methods are closely related, as is well known in

spectroscopy. In the limit of low impurity density, where the interactions between the
impurities can be neglected, S(t) is predicted to be proportional to the inverse Fourier
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transform of the linear excitation spectrum A (ω) of the impurity [Noz69]. To bench-
mark our interferometric method, we measured A (ω) using rf spectroscopy, similar to
our earlier work [Koh12] but with great care taken to ensure a linear response (Sec.
4.6). The measured excitation spectra are shown in Fig. 4.3, A to C, together with a
schematic energy diagram of the quasiparticle branches (Fig. 4.3 D). In the repulsive
and attractive polaron regimes, we observed the characteristic structure of a peak on
top of a broad pedestal [Mas14]. The peak corresponds to the long-time evolution of
the quasiparticle, whereas the pedestal is associated with the rapid dynamics related to
the emergence of many-body correlations. For resonant interactions, the rf response is
broad and nearly symmetric. The latter implies that the imaginary part of S(t) remains
small. Consequently, as seen in Fig. 4.2, E and F, the phase ϕ(t) essentially takes values
near 0 and π, and each phase jump is accompanied by a pronounced minimum of |S(t)|.
The apparent double-hump structure of the spectral response in the resonance regime
suggests an interpretation of the observed oscillations of S(t) (Fig. 4.2 E) in terms of a
quantum beat between the repulsive and attractive branches of our many-body system.
The two branches are strongly broadened and overlap (Fig. 4.3 D), which results in a
strong damping of the oscillations.
A detailed comparison of our time- and frequency-domain measurements reveals the
potential of our approach to prepare and control many-body states. This is illustrated
in Fig. 4.3, where we show the Fourier transform of the S(t) data from Fig. 4.2 as gray
curves. We observed that time-domain measurements where the rf pulses are applied in
the presence of weakly repulsive interactions (Fig. 4.3 D) emphasize the upper branch
of the many-body system, whereas in the attractive case (Fig. 4.3 B and C), the lower
branch is emphasized relative to the rf spectra. We interpret this as a consequence of
the fact that the residual interactions during the rf pulse already bring the system into a
weakly interacting polaron state before it is quenched to resonance (Sec. 4.6). Relative
to the noninteracting initial state used in frequency-domain spectroscopy, these polarons
have an increased wave function overlap with the corresponding strongly interacting re-
pulsive and attractive branches, leading to the observed shift in the spectral weight.
Our measurements show that the control over the initial state of many particles can be
used to manipulate quantum dynamics in the strongly interacting regime. This unique
capability of time-domain techniques can potentially be exploited in a wide range of
applications, including the study of the dynamical behavior near the phase transition
from a polaronic to a molecular system [Mas14] and the creation of specific excitations
of a Fermi sea down to individual atoms [Dub13].
Our interpretation of the results in Figs. 4.2 and 4.3 relies on the assumption that our
fermionic impurities are sufficiently dilute so that any interactions between them can
be neglected. By increasing the impurity concentration, we can extend our experiments
into a complex many-body regime where the impurities interact both with the Fermi
sea and with each other (Sec. 4.6). Figure 4.4 shows the time-dependent contrast mea-
sured for kBT = 0.24 ± 0.02 εF and n̄K/n̄Li =0.20, 0.33, and 0.53. An extrapolation of
the S(t) data to zero concentration (open red circles) lies close to the data points for
n̄K/n̄Li =0.20, which is the typical concentration in our measurements and agrees with
the FDA calculation. This confirms that the physics that we access in the measurements
with a small sample of fermionic impurities is close to that of a single impurity, which we
posit to be a consequence of the fermionic nature of the impurities. When the impurity
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Figure 4.4: Observation of induced impurity-impurity interactions. Resonant dy-
namics of the contrast is shown for X = −0.01±0.05, X1 = 5.2, εF = kB×2.1±0.1µK,
kBT/εF = 0.24±0.02, and different impurity concentrations n̄K/n̄Li. The black, green,
and blue squares correspond to n̄K/n̄Li = 0.53, 0.33, and 0.20, respectively. The red
circles correspond to the linear extrapolation of the complex S(t) data to the limit of
a single impurity, taking into account the errors in the data. The inset reproduces this
extrapolation together with the highest-concentration data points. The red line shows
the result of the FDA calculation, and the shaded region indicates the corresponding
uncertainty range resulting from the combined experimental errors in X, kBT and εF.

concentration is increased, we find that the contrast for t > 5τF is decreased and the
period of the revivals of |S(t)| is prolonged. We interpret this as arising from effec-
tive interactions between the impurities induced by the Fermi sea [Mor10, Yu10]. Such
interactions between fermionic impurities are predicted to lead to interesting quantum
phases [Zwe12].

4.4 Conclusion

Our results demonstrate the power of many-body interferometry to study ultrafast pro-
cesses in strongly interacting Fermi gases in real time, including the formation dynamics
of quasi-particles and the nonequilibrium dynamics arising from quantum interference
between different many-body branches. Of particular interest is the prospect of observ-
ing Anderson’s orthogonality catastrophe (see [Kna12] and Sec. 4.6) by further cooling
the Li Fermi sea [Har15] while pinning the K atoms in a deep species-selective optical
lattice [LeB07]
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4.6 Supplemental Material

MATERIALS AND METHODS

4.6.1 Theoretical Description

In this section, we summarize the approaches that we developed to theoretically model
the results of our interferometric Ramsey experiments. We first discuss the microscopic
model that we use to describe the narrow Feshbach resonance of the Li-K mixture, and
then we outline how we calculate the time evolution of the system within two approaches:
the Truncated Basis Method (TBM) and the Functional Determinant Approach (FDA).
In this section, we assume that a ‘perfect quench’ is performed, where the impurity is
initially non-interacting with the Fermi sea and there are no interactions during the
radio-frequency (rf) pulses. A discussion of the role played by interactions during the rf
pulses is deferred to Section 4.6.5.

4.6.1.1 Narrow Feshbach resonance model for Li-K mixtures

In our experiment, the K impurities are concentrated in the central region of the Li
Fermi gas where they experience a nearly uniform Li environment (see Section 4.6.5.1).
Hence we consider in our model K impurities that are immersed in a Li Fermi gas of
uniform density. The Li-K mixture is prepared at magnetic fields near a closed-channel
dominated Feshbach resonance between the Li|1〉 and K|3〉 states that occurs near 155

G. The narrow character of this resonance is a consequence of the limited strength of the
coupling of atoms in the open channel to a closed-channel molecular state. To describe
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this system we use the two-channel Hamiltonian, valid for a dilute ultracold gas,

Ĥ =
∑
k

εk,Liĉ
†
kĉk +

∑
k

εk,Kd̂
†
kd̂k +

∑
k

[εk,M + εM (B)] b̂†kb̂k

+
g√
V

∑
k,q

χ(krel)
(
b̂†qĉq/2+kd̂q/2−k + d̂†q/2−kĉ

†
q/2+kb̂q

)
, (4.1)

where the first line defines the non-interacting Hamiltonian Ĥ0. Here, V is the total
system volume, ĉ†k (ĉk) creates (annihilates) a Li fermion with momentum ~k and single-
particle energy εk,Li = ~2k2

2mLi
, and d̂†k (d̂k) creates (annihilates) a K impurity atom in the

K|3〉 state with dispersion εk,K = ~2k2

2mK
, where we define k ≡ |k|. The closed-channel

molecule is created (annihilated) by b̂†k (b̂k). It has the dispersion εk,M = ~2k2

2(mK+mLi)
,

and a bare energy relative to the scattering threshold, εM (B) = δµ(B −Bc). Here δµ is
the differential magnetic moment between the open and closed channels, and Bc denotes
the threshold crossing of the bare molecular state [Chi10].
Close to the Feshbach resonance, the scattering length a diverges and the interaction
between the K impurities and the Li atoms is predominantly mediated by exchange of
the closed-channel molecule. We therefore neglect the background scattering potential
in the open channel [Nai11]. The strength of the coupling between the open and closed
channels is given by g, and we take a form factor χ(krel) = 1/[1 + (r0krel)

2], which
accounts for the finite extent r0 of the closed-channel wave function ∼ e−r/r0/r. Here,
krel = |krel| is the magnitude of the relative momentum in the two-atom scattering
[Mor11].
The parameters of the model δµ, Bc, g, and r0 are fully determined by known experi-
mental parameters. First, the differential magnetic moment has recently been measured
to be δµ = h×2.35(2) MHz/G [Cet15]. Second, close to resonance, the scattering length
may be parametrized as

a = abg

(
1 +

∆B

B0 −B

)
≈ abg

∆B

B0 −B
, (4.2)

where B0 is the center of the Feshbach resonance with width ∆B = 0.880G and back-
ground scattering length abg = 63.0 a0 [Nai11]. To connect with our model, we consider
the on-shell two-body scattering amplitude f(k), which for the Hamiltonian (4.1) is
given by [Sch12a]

f(k) =
µred
2π~2

g2χ(k)2

[
− ~2k2

2µred
+ εM (B)− g2µred

4π~2r0[1− ikr0]2

]−1

, (4.3)

where µred = mLimK/(mLi + mK) is the reduced mass and k is the relative scattering
wave vector. Since the gas is ultracold and dilute, scattering of atoms is well described
within the low energy expansion f−1(k) ≈ −a−1 + 1

2reffk
2 − ik, with reff the effective

range, and we thus identify

a =
1

1
2r0

+ 2R∗µredδµ(B −Bc)/~2
, (4.4)

reff = −2R∗ + 3r0 − 4r2
0/a, (4.5)
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where R∗ ≡ ~4π/(µ2
redg

2) is the range parameter of the Feshbach resonance [Bru04,
Pet04]. Comparing Eqs. (4.2) and (4.4) yields

R∗ =
~2

2µredabgδµ∆B
, (4.6)

B0 −Bc =
1

2
∆Babg/r0. (4.7)

Equation (4.6) relates R∗, and thus the coupling constant g, to the known experimental
parameters. The extent of the closed-channel wave function r0 in turn follows by com-
paring Eq. (4.7) to the theoretical prediction from quantum defect theory [Gor04, Szy05],
B0−Bc = abg∆B/ā, where ā = 0.955lvdw and lvdw = 40.8 a0 is the van der Waals length
[Nai11]. Thus we obtain r0 = ā/2. Finally, B0 was obtained in Ref. [Cet15], allowing
the determination of Bc.
In our experiment, the range parameter R∗ takes the value R∗ = 2650(25)a0 [Cet15].
Furthermore, the K impurities effectively experience a homogeneous Li environment.
Thus, in the theory calculations we use the value kFR∗ = 1.1, with kF the effective Li
Fermi momentum.

4.6.1.2 Truncated Basis Method

To model a mobile impurity as in the experiment, we consider an approximate wave
function for the zero-momentum impurity that incorporates the scattering of a single
particle out of the Fermi sea:

|ψα〉 = α0d̂
†
0 |FS〉+

∑
q
αqb̂

†
qĉq |FS〉+

∑
k,q

αk,qd̂
†
q−kĉ

†
kĉq |FS〉 . (4.8)

Here, the first term on the right hand side describes the product state of the impurity
K atom at zero momentum and the ground state of the non-interacting Li Fermi sea
|FS〉 =

∏
|k|<kF ĉ

†
k |0〉, where the Fermi momentum kF is related to the Fermi energy by

εF = ~2k2
F /(2mLi). The last two terms correspond, respectively, to the impurity binding

a Li atom to form a closed-channel molecule, and the impurity exciting a particle out of
the Fermi sea, in both cases leaving a hole behind. When using the TBM, we focus on
zero temperature in order to capture the purely quantum evolution of the impurity. For
convenience, within this model we also take r0 → 0, which formally requires taking the
bare crossing Bc → ∞ to keep a finite. This approximation is justified, as R∗ exceeds
r0 by about two orders of magnitude.
Truncated wave functions of the form (4.8) have been used extensively in the study
of Fermi polarons in ultracold atomic gases, starting with the work of Chevy [Che06].
While most of the previous work has focused on equilibrium properties, recently it has
been proposed that these wave functions may be extended to dynamical problems using
a variational approach to obtain the equations of motion [Par13], for instance to calcu-
late the decay rate of excited states.
Here, we adapt the use of truncated wave functions for the Fermi polaron to the calcu-
lation of the dynamical response of the impurity to an interaction quench. For a perfect
quench and at zero temperature, the quantity measured in experiment corresponds to
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the overlap between the interacting and non-interacting states of the system, i.e., we
have [Goo11, Kna12]

S(t) = 〈ψ0(t)|ψint(t)〉 = 〈ψ0| eiĤ0t/~e−iĤt/~ |ψ0〉 . (4.9)

Here |ψ0〉 ≡ d̂†0 |FS〉 is the initial non-interacting state of energy E0, and ψint(t) is the
state after a quench at time t = 0 from zero to finite impurity interactions with the Fermi
sea. Formally expanding in a complete set of states for the single impurity problem, the
Ramsey signal (4.9) then becomes

S(t) =
∑
j

|〈ψ0|φj〉|2 e−i(Ej−E0)t/~, (4.10)

where |φj〉 is an eigenstate of the interacting Hamiltonian with energy Ej . However,
this requires one to solve the entire problem which is generally not possible for a mobile
impurity. Thus, within the Truncated Basis Method (TBM), we restrict the Hilbert
space to wave functions of the form (4.8) and diagonalize the Hamiltonian within this
truncated basis. As we shall see, this truncation permits an extremely accurate descrip-
tion of the initial quantum dynamics of the impurity.
For small t, we expand e−iĤt/~ up to second order and obtain1

S(t) ≈ 1− (t/τF )2 (1 +mLi/mK)2

3πkFR∗
, (4.11)

with τF the Fermi time. This reveals that the short-time dephasing dynamics of S(t) is
completely determined by the two-body properties, which are captured exactly by the
TBM. In particular, we find that S(t) at short times is independent of the scattering
length, while it depends on kFR∗. As we will see below, the TBM describes the impurity
behavior also beyond the two-body timescale since higher order correlations and multiple
particle-hole excitations take longer to build up. Indeed, for a mobile impurity and for
sufficiently weak attraction X ≡ −1/kFa & 0.6 [Koh12] where the attractive polaron,
and not a molecular state, is the ground state, the TBM correctly describes the long-
time behavior S(t) → |α0|2e−iεpt/~. Here, |α0|2 is the polaron residue (squared overlap
with the non-interacting state) and εp is the polaron energy, which are both accurately
determined using a wave function of the form (4.8) [Vli13].
With the TBM we consider zero temperature in order to isolate the quantum dynamics
of the impurity. To better model the experiment, in principle one can extend the TBM
to finite temperature by taking the initial state to be a statistical thermal distribution
involving multiple impurity momenta. However, a more convenient approach at finite
temperature is described in the next section.

4.6.1.3 Functional Determinant Approach

At times t substantially exceeding τF , the full description of the impurity dynamics
requires the inclusion of multiple particle-hole pair excitations as well as the effect of

1In Preparation, M.M. Parish and J. Levinsen (2016)
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finite temperature, both of which present a theoretical challenge. In order to study and
describe both effects, we employ the Functional Determinant Approach (FDA) [Lev96,
Lev93, Kli03, Kna12].
In the FDA the impurity is treated as an infinitely heavy object. In this limit, the FDA
provides an exact solution of the dynamical many-body problem at arbitrary temper-
atures and times. The justification of the infinite mass approximation, which will be
discussed in more detail in Section 4.6.4, is rooted in two observations. First, in our
experiment, the mass of the K impurities is much larger than that of the Li atoms (mass
ratio mK/mLi ≈ 6.7) which constitute the surrounding Fermi gas. Therefore, the recoil
energy gained by the K impurities due to the scattering with a Li atom is small. We
estimate the typical recoil momentum kR by averaging over all possible scattering pro-
cesses on the Fermi surface, yielding kR = 4kF /3. From that we obtain an estimate for
the typical recoil energy ER = 16

9
mLi
mK

εF ≈ 0.25εF , which determines a typical time scale
τR = ~/ER ≈ 4τF , up to which one expects recoil to have a minimal effect on the many-
body quantum dynamics, cf. Section 4.6.4.2. Second, at times exceeding the thermal
time scale τT = ~/(kBT ), which in our experiment is given by τT ≈ 6τF , thermal effects
due to the averaging over various statistical realizations become relevant. The resulting
thermal fluctuations disrupt the coherent quantum propagation of the impurity, and
hence, for times t > τT , mask the effect of recoil [Ros99].
To a good approximation, we may thus take the limit of infinite impurity mass, which
admits the mapping of Eq. (4.1) onto the bilinear Hamiltonian

Ĥ = εM (B)m̂†m̂+
∑
k

εkĉ
†
kĉk + g

∑
k

χ(k)[m̂†ĉk + m̂ĉ†k]. (4.12)

Here, m̂† is the creation operator of the localized closed channel molecule and the in-
teraction is described by the annihilation of a Li atom converting the empty impurity
molecular state into an occupied one. By taking the limit mK →∞ we obtain a modi-
fied reduced mass µ′red = mLi, which differs by a factor of 40/46 from the experimental
one. This needs to be taken into account when identifying the microscopic parameters.
To ensure, in particular, that the off-diagonal coupling g in Eq. (4.12) remains of the
same strength as in the experiment, a reduced resonance parameter R′∗ = (40/46)2R∗

has been used, which we do for all data shown in the main text. Using these identifica-
tions, the model Eq. (4.12) also accurately describes the short-time dynamics as given
by Eq. (4.11), cf. Fig. 4.2 in the main text.
The calculation of time-resolved, many-body expectation values such as Eq. (4.9) at
arbitrary temperature presents a theoretical challenge. However, for the model (4.12),
we are able to calculate the time-resolved Ramsey response in an exact way using the
FDA [Kli03, Kna12]. This is based on the observation that for bilinear Hamiltonians
thermal expectation values in the many-body Fock space can be reduced to determinants
in the single-particle space by virtue of the identity

tr[ρ̂ eŶ1eŶ2 . . .] = det[1− n̂+ n̂ eŶ1eŶ2 . . .]. (4.13)

Here Ŷ1, Ŷ2, . . . are many-body operators, Ŷ1, Ŷ2, . . . are their single-particle counter-
parts, ρ̂ is the many-body density matrix describing the state of the system, and
n̂ = 1/[eβ(Ĥ0−µ) + 1] is the occupation operator defined in the single-particle space,
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with µ the fermion chemical potential. A specific example for Eq. (4.13) is the perfect
quench Ramsey response, which at finite temperature is given by [Kna12]

S(t) = tr[ρ̂ eiĤ0te−iĤt] = det[1− n̂+ n̂ eiĤ0te−iĤt]. (4.14)

Here, Ĥ0 =
∑

k εkĉ
†
kĉk is the free Hamiltonian of the Li Fermi gas and Ĥ is the Hamil-

tonian in the presence of impurity scattering given in Eq. (4.12), while Ĥ0 and Ĥ are
their single-particle counterparts. A numerical evaluation of Eq. (4.14) then only re-
quires a calculation of the single particle orbitals and energies in order to obtain the
single-particle determinant.

4.6.2 Experimental and Data Analysis Procedure

In this section we discuss the procedures used to record and analyze the data presented
in this work. We detail the cooling and preparation of our atomic samples, the details
of the rf pulses used in our Ramsey sequences, the methods used to analyze the data
and the method that we use to vary the concentration of the K atoms.

4.6.2.1 Sample Preparation

The atomic samples are prepared by forced evaporation of Li atoms from a Li-K mix-
ture held in an optical trap, where the K atoms are sympathetically cooled by the Li
environment. This preparation procedure is described in detail in Refs. [Tre11, Spi10].
At the end of the forced evaporation, the Li and K atoms are transferred into an optical
trap composed of two crossed 1064-nm laser beams, as described in Ref. [Cet15]. The
measured radial and axial trap frequencies of the Li atoms are fr,Li = 941(5) Hz and
fz,Li = 134(1) Hz, respectively. The measured radial and axial trap frequencies of the K
atoms are fr,K = 585(3) Hz and fz,K = 81(1) Hz, respectively.
At the end of the preparation procedure, the Li and the K atoms are in their lowest
Zeeman states Li|1〉 and K|1〉. Before the Ramsey sequence, the K atoms are transferred
to the K|2〉 state using an rf pulse. Following this rf transfer, the Li and K atoms are
thermalized by holding them for 750 ms in the crossed-beam optical trap. While the
interaction between the Li|1〉 and K|2〉 atoms, characterized by the scattering length
a12 = 63a0 [Nai11], is sufficient to ensure thermalization during this hold time, it can be
neglected during the Ramsey experiments. The temperature of the atoms is determined
by releasing the atoms from the trap and observing the free expansion of the K cloud.
Due to the Li Fermi pressure and the more than two times stronger optical potential
for K, the K cloud is much smaller than the Li cloud [Tre11], and therefore samples a
nearly homogeneous Li environment. Because of the small variation of the Li environ-
ment sampled by the K atoms, we introduce the effective Li Fermi energy εF as

εF =
1

NK

∫
EF (r)nK(r)d3r . (4.15)
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Figure(s) NLi NK T εF /h
σ(EF )
εF

n̄Li n̄K

(105) (104) (nK) (kHz) % 1012cm−3 1012cm−3

4.2A, 4.2C, 4.3A 3.5(4) 0.95(10) 435(25) 54.6(2.7) 7.4 8.9(7) 1.8(3)
4.2B, 4.2D, 4.3B 3.3(4) 1.0(1) 410(25) 53.9(2.4) 7.1 8.7(6) 2.0(3)
4.2E, 4.2F, 4.3C 3.5(4) 1.0(1) 460(30) 54.1(2.4) 7.7 8.8(6) 1.7(3)

4.14A 3.1(4) 1.0(1) 430(30) 52.0(2.9) 7.7 8.2(7) 1.8(3)
4.14B 2.9(3) 1.05(10) 425(35) 50.8(2.1) 7.7 8.0(6) 2.0(3)
4.4 2.35(30) 2.5(1) 520(25) 44.2(2.3) 10.4 6.5(5) 3.4(3)

Table 4.1: The total number of the Li atoms NLi, the total number of the K atoms
NK, the sample temperature T , the effective Li Fermi energy εF , the standard deviation
σ(EF ) of the local Li Fermi energy across the trap, the trap-averaged Li and K number
densities n̄Li and n̄K in our measurements.

Here, nK(r) is the local K number density at position r in the trap, and

EF (r) =
~2
(
6π2nLi(r)

)2/3
2mLi

(4.16)

is the local Li Fermi energy as determined by the local Li number density nLi(r). We
quantify the small inhomogeneity of the Li environment experienced by the K atoms by
the standard deviation of the local Li Fermi energy

σ(EF ) =

(
1

NK

∫
(EF (r)− εF )2nK(r)d3r

)1/2

. (4.17)

We also introduce the average Li and K number densities n̄Li and n̄K sampled by the K
atoms as

n̄Li,K =
1

NK

∫
nLi,K(r)nK(r)d3r . (4.18)

In contrast to the Li atoms, the K atoms in our measurements remain non-degenerate,
with kBT/EK

F (0) > 1.2, where EK
F (0) is the local potassium Fermi energy in the center of

the trap when all K atoms are in the same internal state. For all measurement presented
in this work, Table 4.1 lists the total numbers of the Li and K atoms, their temperatures
and trap-averaged densities, as well as the effective Li Fermi energies and their standard
deviations. Throughout our measurements, these parameters remain nearly constant,
with the exception of the measurements shown in Fig. 4.4. Here, in order to investigate
the effect of the K concentration, the total number of the K atoms is increased from about
1×104 to 2.5×104. The attendant increase in the thermal load during the Li evaporation
results in a decrease of the Li atom number and an increase in the temperature of the
final atomic sample.
Note that, in contrast to our previous work [Cet15], our present experiments have been
optimized for large optically induced interaction shifts (|X −X1| ≈ 5). These shifts are
produced by switching one of the crossed trapping beams from a beam with a low peak
intensity and small size to a beam with a large intensity and large size propagating in
the same direction. In our previous work [Cet15], as well as in the measurements shown
in Fig. 4.14, the waists, positions and intensities of the two beams are adjusted so as
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to yield mode-matched trapping potentials, preventing excitations of the center-of-mass
and breathing collective modes of the atomic clouds. In the measurements presented in
Figs. 2, 3 and 4, a larger beam intensity was used in order to produce a larger optical
shift, resulting in some excitation of the breathing modes.
The maximal interaction time in our Ramsey measurements of 60 µs is much smaller
than the shortest period of a collective oscillation (about 500 µs). We calculate that,
during our short interaction time, the oscillations of the breathing modes cause at most a
6% variation of εF around its initial value specified in Table 4.1, without any significant
effect on the measurements presented here.

4.6.2.2 RF pulses

We apply rf pulses in the Ramsey procedures by discretely gating a continously running
rf source. To record the atomic populations N3 and N2 as a function of the phase of the
second rf pulse, we change the phase of the rf source by a variable amount φrf before
applying this pulse.
The weak interactions between the K atoms in the K|3〉 state and the Li atoms corre-
sponding to the interaction parameter X1 cause the transition frequency between the
K|2〉 and the K|3〉 states to differ from the transition frequency ω0 in the absence of
the Li atoms. We compensate for this effect by adjusting the frequency ωrf of the rf
source to be resonant with the K|2〉-K|3〉 transition at the time when the rf pulses are
applied. For the data in Figs. 2A, 2B, 2C, (ωrf−ω0)τF is equal to +0.06, −0.07, −0.05,
respectively. For the data in Fig. 4.14C and 4.14D where the interaction of the K atoms
during the rf pulses is stronger, (ωrf − ω0)τF is equal to +0.11 and −0.16.
The shift in the frequency of the rf source from ω0 to ωrf causes the signal S(t) to ac-
cumulate an additional phase (ωrf − ω0)t during the interaction time t. To account for
this added phase, we introduce the phase φ = φrf + (ωrf − ω0)t.

4.6.2.3 Analysis Methods

We determine the contrast |S(t)| and the phase ϕ(t) by fitting the Ramsey signal (N3−
N2)/(N3 + N2) as a function of the phase φ to a sine wave with an offset i.e. F (t) +

|S(t)| cos (φ− ϕ(t)). Decoherence during the rf pulses, as well as imperfections of the rf
pulses and the atom detection, cause the contrast for t = 0 to be slightly smaller than
unity. When comparing theoretical results from Figs. 4.12 and 4.13 to the experimental
data in Fig. 2, we account for this effect by scaling the theoretical predictions for |S(t)|
by an overall factor η. For each calculation, this factor is determined by fitting the
prediction for |S(t)| to the three data points with the the shortest interaction times.
We obtain 0.92 < η < 1, which corresponds to an additional loss of contrast that is of
the same order as the decoherence during the rf pulses predicted by the FDA (see Fig.
4.13).
To compute the Fourier transform of the experimental S(t) data, we use piecewise linear
interpolations of logS(t) and ϕ(t) between the individual data points. Outside of the
range of the data, we set S(t) = 0. To determine the error of the Fourier transform,
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we sample the values of S(t) and ϕ(t) at each data point from Gaussian distributions
whose means and standard deviations correspond to the measured values and errors,
respectively. We use the standard deviation of the computed values of the Fourier
transform for each value of ω as an estimate of the error indicated by the shaded areas
in Figs. 3 and 4.14.

4.6.2.4 Varying the K concentration

We study the effects of the impurity concentration by varying the number of the strongly
interacting K atoms. If this were done by changing the total number of the K atoms in
the experiment, the change in the thermal load on the Li atoms during forced evapo-
ration would result in a correlated variation in the number of Li atoms and the sample
temperature (compare the settings for Fig. 2 and Fig. 4 in Table 4.1). To avoid these
systematic effects, in the measurements presented in Fig. 4, we keep the total number
of the K atoms constant and vary the fraction of the K atoms that participate in the
Ramsey sequence. We accomplish this by changing the intensity of the rf pulse that
transfers the K atoms from the |1〉 state to the |2〉 state before the Ramsey procedure.
During the subsequent 750 ms preceding the Ramsey sequence, the K atoms collisionally
thermalize with the much larger Li cloud, resulting in an incoherent mixture of K|1〉 and
K|2〉 atoms at a constant temperature. When referring to these measurements, we use
n̄K not for the average density of all K atoms, but for the density of those K atoms that
participate in the Ramsey sequence.
We minimized the small effects of long-time drifts in the temperature, the atom numbers
and the trapping potential by varying the experimental parameters in a specific order.
For each K concentration and interaction time, we recorded data for 4 different phases
of the second rf pulse in order to obtain S(t). For each interaction time, the data with
different K concentrations were recorded in immediate succession. The data sets for
different interaction times were then recorded in a random order.

4.6.3 Linearity of RF response

The response of atoms to an applied rf field is linear if the fraction of the atoms trans-
ferred from one state to another is proportional to the intensity of the field. Linearity
can be ensured by using a sufficiently weak rf pulse that is also much longer than the
inverse width of the relevant spectral features. The narrowest spectral features in the
present work are the polaron peaks in Figs. 3A and 3B with rms widths 0.06 ~/τF and
0.09 ~/τF , respectively. To record these polaron spectra, we used Blackman-shaped rf
pulses [Kas92] whose duration trf = 300µs ≈ 100 τF is much longer than the inverse
widths of the polaron peaks. We checked the linearity of the response by varying the
intensity Irf of the applied rf field. Fig. 4.5A shows the fraction of the K atoms trans-
ferred from the K|2〉 to the K|3〉 state in the repulsive polaron regime, under conditions
similar to those in the measurements shown in Fig. 3A. The frequency of the rf pulse
is adjusted so that (ωrf − ω0)τF = 0.3, corresponding to peak response and resonant
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Figure 4.5: Linearity of the rf response in the repulsive polaron regime. (A)
Fraction of the K atoms transferred from state K|2〉 to the state K|3〉 for X = −0.13(6)
as a function of the intensity Irf of an rf pulse with duration trf = 300µs. (B) Fraction of
the K atoms transferred forX = −0.23(6) as a function of the duration trf of the rf pulse
for the rf pulse intensity Irf = 0.79 Iπ. Vertical dashed lines correspond to Irf = 0.79 Iπ
and trf = 300µs, respectively. The pulse frequencies are adjusted to resonantly excite
the repulsive polaron. The blue solid lines indicate linear fits to the data in the ranges
indicated by the same lines. The blue dashed lines show extrapolations of these fits.

excitation of the repulsive polaron. The rf intensity is measured in units of the inten-
sity Iπ that results in a π-pulse for noninteracting K atoms. For intensities up to the
intensity Irf = 0.79 Iπ, which is used in the measurements shown in Figs. 3A and 3B,
we observe that the transferred fraction of the K atoms stays essentially proportional to
the intensity of the pulse.
In the linear-response regime, the atomic response is predicted to be proportional to
the duration of the rf pulse. Fig. 4.5B shows the fraction of the K atoms transferred
in the repulsive polaron regime by rf pulses with Irf = 0.79 Iπ, as a function of the
pulse duration. The frequency of the rf pulse is adjusted so that (ωrf − ω0)τF = 0.3, in
order to obtain the peak response, as in Fig 4.5A. For pulses with duration up to 300 µs
(indicated by the dashed line), we observe that the transferred fraction of the K atoms
stays essentially proportional to the duration of the pulse.
Note that the maximal transferred fraction exceeds 0.5. We explain this observation by
the coupling of the initial non-interacting K state to multiple interacting K states by
the rf pulse, which manifest themselves as the polaron peak and the broad pedestal in
our spectra.
The spectra for resonant Li-K interactions shown in Figs. 3B, 4.14A, 4.14B were recorded
using Blackman-shaped rf pulses with duration of trf = 100µs (approximately 35 τF ).
The intensity of these pulses was adjusted to 50% of that needed to produce π pulses
for noninteracting K atoms. We verified the linearity of the rf response by comparing
the spectra recorded using this rf intensity to those recorded using the intensity needed
to produce full π pulses for noninteracting K atoms (Fig. 4.6). Our observations are in
good agreement with linear response.
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Figure 4.6: Linearity of the rf response for resonant interactions. Fraction of
the K atoms transferred from state K|2〉 to the state K|3〉 by an rf pulse with duration
trf = 100µs for X = +0.02(6). For the black data points, the intensity of the rf pulse is
adjusted to obtain a π-pulse in the absence of Li atoms. The red data points correspond
to a 50% lower intensity of the rf field.

SUPPLEMENTARY TEXT

4.6.4 Role of Physical Processes on Different Timescales

The combination of both our theoretical approaches allows us to accurately model the
physics at various time scales in our experiment. Making use of the fact that the FDA
and the TBM differ distinctly in their treatment of multiple particle-hole excitations,
the impurity mass, and finite temperature, we can use a comparison of their predictions
to determine the role of these processes and effects in the many-body non-equilibrium
dynamics of our experiment. We also discuss the role of two-body physics in the initial
time evolution. To keep the analysis transparent, in this section we still assume that a
perfect quench is performed.

4.6.4.1 Multiple Particle-Hole Excitations

In order to analyze the role of multiple particle-hole excitations, we first consider the
limit of a fixed (infinitely heavy) impurity at zero temperature. In this scenario, the FDA
yields the exact solution of the impurity problem. Since, in this case, the TBM only
differs from the FDA by its neglect of multiple particle-hole excitations, a comparison
of the predictions of the two methods allows us to isolate the effect of these excitations.
In Fig. 4.7 we display the predictions for the Ramsey response using the two theoretical
approaches. We find that both theoretical predictions agree extremely well at short
times. In particular, for both the amplitude and phase of S(t), our results imply that
multiple particle-hole excitations start to influence our observables at a time scale of
around 6τF , and only become prominent beyond 10τF . Thus, at shorter time scales,
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Figure 4.7: Effect of multiple particle-hole fluctuations. Taking the idealizing
limit of zero temperature and infinite impurity mass, we compare the Ramsey response
for a perfect quench (top: amplitude, bottom: phase) obtained exactly with the FDA
(red, long dashed) to the one obtained with TBM (blue, short dashed) for (A, C)
X = −0.23, (B, D) X = 0.86, and (E, F) X = 0.08. For this comparison, we take
r0 = 0 and kFR′∗ = 1.1(40/46)2.

multiple particle-hole excitations can be neglected when predicting the results of the
Ramsey measurements.
We note that the fixed impurity scenario is a worst-case scenario for the TBM: At
T = 0, the infinitely heavy impurity is subject to the orthogonality catastrophe with an
associated power-law decay of the Ramsey contrast at long times [And67]. This decay,
which arises due to an infinite number of particle-hole fluctuations and which leads to
a vanishing quasiparticle weight, is exactly incorporated in the FDA. By contrast, in
the long-time limit, the TBM predicts the saturation of |S(t)| to a constant value (see
Fig. 4.7), corresponding to a spurious finite residue. However, for a mobile impurity at
zero temperature, recoil becomes relevant. These recoil effects lead to the absence of
the orthogonality catastrophe [Ros99], and thus to an increased accuracy of the TBM
in the case of finite impurity mass.
Generally, one expects that the relevant time scale for multiple particle-hole excitations
is closely related to the Fermi time τF . As discussed above, we find that such excitations
become relevant for a description of S(t) only at around 6τF or beyond. This observation
can be understood in a twofold way. First, in the equilibrium case it was found that
contact interactions in the Fermi polaron problem lead to an approximate cancellation of
terms involving identical fermions, thus suppressing the emergence of multiple particle-
hole fluctuations [Com08]. Our observation may hence be interpreted as a generalization
of these findings to the non-equilibrium case. Second, the spectrum of the Fermi polaron
problem features a dominant contribution involving the excitation of fermions from the
bottom of the Fermi sea to the Fermi surface [Kna12]. As discussed in Ref. [Kna12],
these excitations manifest themselves as oscillations with period 2πτF in the Ramsey
contrast |S(t)|. Such a bottom of the band excitation is also present in the truncated
wavefunction (4.8), and indeed the remarkable agreement of the TBM with the exact
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solution from the FDA up to the time 2πτF suggests that this effect can be captured by
single-particle hole excitations.

4.6.4.2 Impurity Mass

0 5 10 15

1

0

0.5

20 0 5 10 15 20 0 5 10 15 20

1

0

0.5

1

0

0.5

1

0

0.5

-0.5

-1

A B

F

E

DC

Figure 4.8: Effect of the impurity motion on the short-time dynamics. Ampli-
tude (top) and phase (bottom) of the perfect quench zero temperature Ramsey response
S(t) as a function of time for (A,C)X = −0.23, (B,D)X = 0.86, and (E, F)X = 0.08.
We compare the results of the TBM obtained for mK = (40/6)mLi and kFR

∗ = 1.1
(solid) with the TBM results for fixed impurities mK → ∞ and kFR′∗ = 1.1(40/46)2

(dashed).

As discussed in the main text, our experimental findings are well described by the static
impurity approximation, although the impurity has finite mass. To quantify the effect
of the finite impurity mass, we study here the case of zero temperature. This allows us
to isolate the effect of finite impurity recoil from the influence of thermal fluctuations,
which will become dominant beyond times τT ≈ 6τF , as discussed in the section below.
In order to estimate at which time scale recoil becomes important, we make use of
the capability of the TBM to describe impurities of arbitrary mass. Furthermore, our
analysis in Sec. 4.6.4.1 shows that the TBM yields highly accurate results for the short-
time dynamics of S(t). Accordingly, in Fig. 4.8 we display the Ramsey response for
a static impurity and for the experimentally relevant impurity mass, both calculated
within the TBM. We see that for both amplitude and phase, the impurity motion only
results in a small difference in the Ramsey signal at times t . 4τF . Physically, this
time scale corresponds to the effective recoil time τR associated with Li collisions on K
atoms, which we estimated in Sec. 4.6.1.3 to be τR ≈ 4τF , in agreement with our findings
here. At times exceeding τR, we find that the dynamics is indeed affected by the finite
impurity mass. However, at such times, thermal fluctuations dominate the behavior in
experiment, as we now discuss.
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Figure 4.9: Effect of finite temperature on the impurity dynamics. We
compare the Ramsey signal (upper panels: amplitude, lower panels: phase) for an
infinitely heavy impurity obtained from an exact FDA calculation at zero (long dashed)
and finite temperature (solid curves). The ordering of the graphs is as in the main text:
(A,C)X = −0.23, T/TF = 0.17, (B,D)X = 0.86, T/TF = 0.16, and (E, F)X = 0.08,
T/TF = 0.18. We assume a perfect quench and choose r0 = 0 as well as kFR∗ = 1.1,
i.e., kFR′∗ = 1.1(40/46)2.

4.6.4.3 Temperature

At long times, the time evolution reduces to a simple exponential decoherence of S(t).
The time scale at which this crossover to exponential decay takes place is given by the
thermal time scale τT . In our experiment, where T/TF ≈ 0.15, this corresponds to
τT ≈ 6τF and, hence, we observe both regimes within the dynamical range probed in
our experiment.
In this section, we use finite-temperature FDA calculations to gauge the role of tem-
perature in the impurity dynamics. To this end we compare the results for the Ramsey
signal at zero and finite temperature for the experimentally realized parameters. The
results are shown in Fig. 4.9. We indeed find that at times ∼ 6τF the time evolution at
finite temperature starts to deviate from the purely quantum behavior. Finite tempera-
ture leads to an exponential decoherence of the Ramsey signal and has the consequence
that thermal fluctuations dominate over the impurity motion at times t & 6τF [Ros99].
Hence they mask the effect of impurity recoil as discussed in Sec. 4.6.1.3.
Overall, the conditions in our experiment give rise to three competing time scales. Mul-
tiple particle hole excitations become relevant for our measurement of S(t) at around
6τF , the recoil time is τR ≈ 4τF , and the thermal scale is set by τT ≈ 6τF . A comparison
of these scales reveals the reason for the remarkable agreement between the FDA and
experiment: Recoil is only weakly probed at short times t < τR, while its effect is washed
out by the thermal fluctuations at long times t > τT ≈ τR.



Ultrafast many-body interferometry of impurities coupled to a Fermi sea 53

4.6.4.4 Two-Body Physics in the Initial Time Evolution

At short times t � τF , the response is dominated by two-body scattering processes,
while the fast collective many-body dynamics, which is the focus of this work, only
sets in for t & τF . As discussed in Sec. 4.6.1.1, two-body scattering in the current
experiment is well described by the low energy expansion of the scattering amplitude,
i.e., 1/f(k) ≈ −a−1 + 1

2reffk
2− ik. Hence, our system is universally governed by the two

parameters, scattering length a and effective range reff.
The effective range is a function of the van der Waals length lvdw and the range parameter
R∗, which characterizes the strength of the Feshbach resonance, cf. Eq. (4.5) [Chi10].
For our system, the van der Waals length is given by lvdw = 40.8 a0. This corresponds
to time scales short compared to the ones we study in this work, and hence lvdw is
irrelevant for our considerations here. However, the range parameter R∗ requires a more
careful consideration. Our experiment is performed in the vicinity of a closed-channel
dominated resonance which is characterized by R∗/lvdw � 1. Therefore, the effective
range is dominated by the parameter R∗.
In the previous section, we have shown that at times t� τF , 1−S(t) ∝ t2 with a prefactor
which depends on R∗, but is independent of the scattering length2, see Eq. (4.11). Here
we demonstrate this fact in more detail by studying numerically the short-time evolution
of our system. At t � τF , neither temperature nor multiple particle hole excitations
play a role. Hence TBM becomes an essentially exact theory. In Fig. 4.10, we display√

1− |S(t)| evaluated within the TBM for different values of kFR∗ and scattering lengths
a. We see that at short times the prediction, Eq. (4.11), is indeed satisfied with S(t) being
independent of the scattering length and being solely dependent on R∗. This clearly
demonstrates that the initial Ramsey response depends solely on the short-distance
behavior, determined by the scale kFR∗.
However, once t & τF , the response is governed by many-body physics. The predicted
short-time evolution is challenging to probe in experiment since it requires a high density
of data for t < τF and no interactions in the initial state. Furthermore, in practice,
the applied rf pulses introduce weak interactions into the system, and thus modify the
response, as we discuss in the following section.

4.6.5 Role of Interaction During Finite-Length RF Pulse

In this section, we analyze the role of the ‘imperfect’ interaction quench in our exper-
iments, where residual interactions are present during the rf pulses. Furthermore, we
discuss how our findings pave the way towards the use of our experimental techniques
to exert control over many-body states in real time.

2In Preparation, M.M. Parish and J. Levinsen (2016)
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Figure 4.10: Short time evolution of S(t). We show the results obtained using
the TBM at T = 0 at scattering length X = 0.86 (thick dotted), X = 0.08 (thick
dashed), and X = −0.23 (thick solid) for different choices of kFR∗. Note, the results
for the various interaction strength X are almost identical, since at short times they are
independent of X, as predicted by Eq. (4.11) (thin dashed black line). For all results
shown we assume a perfect Ramsey sequence.

4.6.5.1 Idealized Versus Realized Ramsey Scenario

Thus far, we have assumed the idealized scenario of a perfect two-pulse Ramsey scheme.
In this case, the initial spin state of the impurity (K|2〉 in the experiment) is non-
interacting with the Li Fermi sea and there are no interactions during the applied rf π/2
pulses. Each pulse then yields a perfect rotation on the Bloch sphere, e.g., the initial
state K|2〉 is transformed into the spin-state superposition (K|2〉+ K|3〉)/

√
2. For such

a perfect Ramsey sequence, the measured Ramsey signal S(t) gives the overlap between
the time-evolved interacting and non-interacting states of the system [Goo11, Kna12],
yielding Eqs. (4.9) and (4.14) for zero and finite temperature, respectively. In this
idealized scenario, the Fourier transform of S(t) corresponds to the excitation spectrum
of the system in linear response [Mah90],

A(ω) = Re
∫ ∞

0

dt

π
eiωtS(t), (4.19)

where ω is the detuning of the frequency of the applied rf field from the unperturbed
transition frequency.
In our experiments, however, residual interactions are present during the π/2 pulses,
which take a finite time to be completed. As shown in the illustration of our experimental
sequence in Fig. 4.11, the state K|3〉 can already interact with the Li cloud during the
π/2 rotation, which potentially affects the observed dynamics of the system. Specifically,
this stage of the experiment is performed at a detuning from the Feshbach resonance
which corresponds to a weak interaction strength X1 between the impurities and the
Fermi sea (cf. Section 4.6.5.2 and Fig. 4.11). After preparing the superposition state of
the impurity spin, we quench the system to strong interactions (interaction parameter
X) by optically shifting the Feshbach resonance [Cet15]. We previously focussed on the
complex non-equilibrium dynamics resulting from the strong interactions X during the
time t. In the following, we analyze the effect of the residual interaction X1 during the
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Figure 4.11: Schematic of the experimental Ramsey procedure. The K atoms
start out in the hyperfine state K|2〉, which is effectively non-interacting with the Fermi
sea. A 10 µs (3.4 τF ) long square π/2 pulse is applied in the presence of weak interac-
tions between the K|3〉 atoms and the Li atoms, quantified by the interaction parameter
X1. We then use optical control of our Feshbach resonance to rapidly (in less than 200
ns (0.08 τF )) quench the system into the strongly interacting regime (interaction param-
eter X). After a variable interaction time t we optically shift the interaction strength
back to X1, and then close the Ramsey sequence by a second π/2 pulse. We vary the
phase of this pulse by shifting the phase of the rf source by φrf before the second pulse
is applied.

finite-duration π/2 spin rotations. In particular, we investigate the impact of these weak
interactions during the rf pulses on the Ramsey response S(t) and the spectrum A(ω)

as obtained from the Fourier transform Eq. (4.19).

4.6.5.2 Modelling of RF Pulses within TBM

In this section, we extend our modelling of the zero-temperature impurity dynamics
within the TBM to directly simulate the entire experimental procedure, as illustrated in
Fig. 4.11. In order to model the rf pulses, we explicitly include both K|2〉 and K|3〉 spin
states, as well as the rf field. This modifies the Hamiltonian, Eq. (4.1), to Ĥ = Ĥ + Ĥrf

with the additional term

Ĥrf =
Ω

2i

∑
k

(
eiφrf d̂†k,2d̂k,3 − e

−iφrf d̂†k,3d̂k,2

)
+
∑
k

(εk,K + ~(ωrf − ω0))d̂†k,2d̂k,2. (4.20)

Here, we have used the rotating wave approximation. Ω corresponds to the strength of
the rf field, φrf is the variable phase of the second rf pulse, and d̂†k,σ creates a particle
in the state K|σ〉 with momentum ~k. Note that d̂†k ≡ d̂†k,3 in the original two-channel
Hamiltonian (4.1). The interactions during the rf pulses cause a shift in the transition
frequency between the K|2〉 and K|3〉 states from the bare transition frequency ω0 to
ω0 + ε1/~, where ε1 is the polaron energy at interaction parameter X1. As described
in Sec. S5.B, we account for this shift by adjusting the frequency of our rf pulses to
ωrf = ω0 + ε1/~.
According to the last term in Eq. (4.20), the shift in the frequency of the rf source



56 Ultrafast many-body interferometry of impurities coupled to a Fermi sea

from ω0 to ωrf causes the observed signal to accumulate an additional phase (ωrf − ω0)t

during the interaction time t. To account for this, we introduce the phase φ = φrf +

(ωrf − ω0)t. We then determine |S(t)| and the phase ϕ(t) by noting that the Ramsey
signal (N3−N2)/(N3 +N2) corresponds to a sine-wave function of φ plus an offset, i.e.,
it takes the form F (t) + |S(t)| cos(φ − ϕ(t)) with F (t) a real, φ-independent function.
This mirrors the experimental procedure, where F (t), |S(t)|, and ϕ(t) appear as fit-
parameters for the Ramsey signal, see Sec. S5.B. Within the TBM, we determine the

Figure 4.12: Role of the residual interactions within TBM. We present the
zero-temperature response S(t) and the corresponding spectrum A(ω) for the perfect
quench (dashed blue) and the actual experimental sequence shown in Fig. 4.11 (solid
blue). As in the main text, we take kFR∗ = 1.1 and the interaction parameters: (A, C)
X = −0.23, X1 = −3.9, (B, D) X = 0.86, X1 = 5.8, and (E, F) X = 0.08, X1 = 4.8.
For comparison, in (B, D, E, F), we represent by black dotted lines the scenario where
the initial state before the quench is approximated as a weakly attractive polaron —
see Sec. 4.6.5.2 for details. The spectra have been convolved with the experimental
Fourier-limited rf spectral lineshapes, which are Gaussian-shaped with width σ, where
στF = 0.03 for X = 0.86, −0.23, and στF = 0.1 for X = 0.08.

approximate eigenstates and eigenvalues of Ĥ within the more general class of truncated
wavefunctions:

|ψrf〉 =
(
α0,3d̂

†
0,3 + α0,2d̂

†
0,2

)
|FS〉+

∑
q
αqb̂

†
qĉq |FS〉+

∑
kq

(
αkq,3d̂

†
q−k↓ĉ

†
kĉq + αkq,2d̂

†
q−k,2ĉ

†
kĉq

)
|FS〉 .

To model the experimental quench sequence illustrated in Fig. 4.11, we apply a series
of time evolution operators to the initial state consisting of a K|2〉 atom and the Li
Fermi sea. At the end of the sequence we then extract the number of K atoms in states
K|2〉 and K|3〉, respectively. We include explicitly the rf pulses, the wait times, and
the interaction time t during which the system is strongly interacting. The results of
this procedure are displayed in Fig. 2 of the main text. Here, we account for slight
additional experimental decoherence by scaling the prediction for |S(t)| as described in
Section S.5C.
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In the upper panels of Fig. 4.12 we compare the Ramsey response obtained by sim-
ulating the actual experimental sequence (solid line) with that of the perfect quench
scenario (dashed line). We see that the residual interactions X1 in experiment can in-
deed influence the quantum evolution of the impurity. The difference in the responses
can be straightforwardly explained by assuming that the main effect of X1 is to produce
a weakly interacting initial state. Specifically, for weak attractive interactions X1 > 0,
the Ramsey response can be approximated as

S(t) ' 〈ψX1 | e−iĤt/~ |ψX1〉 , (4.21)

where |ψX1〉 is the ground state of the Hamiltonian (4.1) at interaction parameter X1.
Note that we cannot formally construct a similar expression for the repulsive caseX1 < 0,
since the repulsive polaron is a metastable state, involving multiple eigenstates of the
Hamiltonian.
Referring to Fig. 4.12, the excellent agreement between the approximation (4.21) and the
full Ramsey signal provides strong evidence that the residual interactions X1 produce a
weakly attractive initial state. This is further supported by the spectrum A(ω) shown
in the bottom panels, where we see that the residual interactions enhance the attractive
polaron peaks for X = 0.08 and 0.86. A similar enhancement of the repulsive polaron
peak is observed for X = −0.23. Hence we conclude that the explicit modelling of
the impurity dynamics using the full Hamiltonian Ĥ = Ĥ + Ĥrf is not essential for the
description of the dynamics during the initial π/2 spin rotation and instead one can fully
describe the time evolution using the Hamiltonian (4.1).
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Figure 4.13: Role of the residual interactions in the Ramsey sequence at
finite temperature. Upper panels: we compare the perfect quench Ramsey response
(dashed) with a simulation of the experimental sequence (solid). Lower panels: we
compare the linear-response excitation spectrum (dashed) with the Fourier transform
of the signal obtained using the experimental sequence (solid). As in the main text,
we take kFR∗ = 1.1 and the interaction parameters: (A, C) X = −0.23, X1 = −3.9,
(B, D) X = 0.86, X1 = 5.8, and (E, F) X = 0.08, X1 = 4.8. The temperatures are
T/TF = 0.166, 0.158, 0.177, respectively.
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4.6.5.3 Modelling of Experimental Procedure at Finite Temperature within
FDA

The interplay between the residual interactions and finite temperature presents a further
theoretical challenge. In the following, we use the FDA to simulate the experimental
protocol (Fig. 4.11) at finite temperature. To achieve this, we exploit the finding from
Sec. 4.6.5.2 that the detailed dynamics of the rf-driven oscillations between the K|2〉 and
K|3〉 states can be ignored when calculating S(t). Thus, we assume that the initial π/2
rotation effectively produces a spin superposition (K |2〉 + K |3〉)/

√
2, independently of

the residual interaction X1 of the impurity in the state K|3〉 with the Fermi sea. To
account for the dynamics due to the weak interaction X1, we then let the system evolve
under this interaction for a hold time th = trf/2 + twait, which models the dynamics at
weak interactionX1 as the result of a sudden switch-on of this interaction at the midpoint
of the π/2 pulses. After the hold time th, the final quench to the strong interactions X
is performed. For the measurement of the Ramsey contrast, this sequence is reversed.
Theoretically, this yields the modified time-dependent overlap

S(t) = tr
[
ρ̂ eiĤ0(2th+t)e−iĤ1the−iĤX te−iĤ1th

]
, (4.22)

where Ĥ1 and ĤX denote the Hamiltonian (4.1) at interaction strength X1 and X, re-
spectively. Using the FDA, the expression Eq. (4.22) is evaluated exactly according to
Eq. (4.13) at the experimental temperature. As can be inferred from Eq. (4.22), this
simplified model of the experimental protocol corresponds to a sequence of interaction
quenches.
In the upper panel of Fig. 4.13 we compare the result for |S(t)| at the experimental
temperatures obtained for the experimental sequence (solid lines) to the result for an
idealized, i.e., perfect quench, Ramsey sequence (dashed lines). Similarly to the case of
zero temperature, we see that the time evolution at X1 has an experimentally observ-
able effect on the dynamics. In particular, it generates an additional decoherence of the
Ramsey signal already at t = 0, as well as an enhancement of the oscillations in |S(t)|
for resonant interactions – see Fig. 4.13E.
For the calculation of the FDA results shown in Fig. 2 of the main text we use the same
procedure as described above. We account for slight additional experimental decoher-
ence by scaling the prediction for |S(t)| as described in Section S.5C. We also note that
the phase ϕFDA(t) of the Ramsey signal S(t) = |S(t)|e−iϕFDA(t), as determined from
Eq. (4.22), differs from the experimentally measured phase ϕ(t) due to the detuning of
the rf frequency from ω0. They are related by ϕ(t) = ϕFDA(t)− (ωrf − ω0)(2twait + trf).
Similar to the previous section and to the experiment, we take ωrf − ω0 = ε1/~.
As outlined in Section 4.6.5.1, in the idealized Ramsey scenario the Fourier transform
A(ω) of S(t) is equivalent to the rf absorption in linear response, cf. (4.19) [Kna12].
Similarly to our T = 0 analysis in Sec. 4.6.5.2, we now study the effect of the residual
interactions X1 on the spectral decomposition of S(t). To this end we compare the
two signals A(ω) for the perfect quench with the result obtained for the experimental
sequence as modelled by Eq. (4.22). We show the comparison of the spectra obtained
in the idealized (dashed) and experimentally realized scenario (solid) in the lower panel
of Fig. 4.13. As for our T = 0 results discussed above, we find only a small difference
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between the two finite-temperature spectra. Therefore, in agreement with the experi-
mental observation, cf. Fig. 3 in the main paper, under the condition of |X1| ≈ 5 we see
that the weak interactions during the rf pulses have an observable but small effect on
the predicted spectra.
In accordance with the results from the TBM shown in Fig. 4.12, we find from the eval-
uation of Eq. (4.22) that weak interactions X1 lead to a small shift of spectral weight
into the corresponding dominant polaron branches. This shift of spectral weight is also
observed experimentally, see Fig. 3 of the main text.

4.6.5.4 Stronger Interactions During RF Pulses: Illustration of Quantum
State Preparation
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Figure 4.14: Control of the spectral decomposition of many-body quantum
states. Upper panel: We compare the experimentally measured rf spectrum at the
interaction parameter X (green squares) to the Fourier transform of S(t) obtained using
the measurement procedure illustrated in Fig. 4.11 with initial interaction parameter
X1 (gray shading). Lower panel: we compare the theoretical prediction from the FDA
for the linear-response excitation spectrum (green) to the Fourier transform of the
signal obtained by simulating the experimental sequence according to Eq. (4.22). (A,
C) X = 0.14, X1 = −2.2, kFR∗ = 1.09, T/TF = 0.174. (B, D) X = −0.25, X1 = 1.7,
kFR

∗ = 1.1, T/TF = 0.17.

The shift of spectral weight towards the attractive or repulsive branches of the spectrum,
cf. Figs. 4.12 and 4.13, may be interpreted as follows: The residual interactions present
during the initial π/2 impurity spin rotation serve to produce an interacting many-body
quantum state. As such, this procedure can be viewed as an adiabatic preparation of
an attractive or repulsive polaron. Compared to the noninteracting state, this polaron
has an increased wavefunction overlap with the corresponding branch of the strongly
interacting system. When the system is then quenched into the regime of strong inter-
actions, the increased overlap results in the corresponding shift of the spectral weight.
An intriguing question is then whether such an approach can provide a novel way to
experimentally control the spectral decomposition of quantum states.
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To investigate this possibility, we increase the interaction during the π/2 rotations, cor-
responding to decreasing |X1|, and determine the effect on A(ω). In the upper panel of
Fig. 4.14 we show the spectra obtained by linear-response rf spectroscopy (green squares).
Similar to Fig. 3 of the main paper, we compare this result to the Fourier transform
of the Ramsey signal S(t) (gray shading), as obtained from the experimental sequence
described in Fig. 4.11. We also compare our experimental result to the prediction from
the FDA, where the dynamics has been modelled as described by Eq. (4.22). As in the
main text, we find excellent agreement between experiment and theory. Indeed, both
feature a strong shift of spectral weight to regions of the spectrum that are adiabatically
connected to the dominant polaron branches at interaction X1. Furthermore, when
comparing A(ω) in Fig. 4.14, with the spectrum for |X1| ≈ 5 in Figs. 4.12 and 4.13,
it is clear that the amount by which the spectrum is shifted can be controlled by the
strength of the interaction during the rf pulses. This strongly supports the assertion
that the initial interactions can be used to precisely control the many-body dynamics.
Our experimental techniques thus allow for a precise, dynamic control of the spectral
decomposition of quantum states in future experiments.
The excellent agreement between theory and experiment also demonstrates that our
theoretical approaches can be used to explore experimental ramps in combination with
interferometric protocols in order to find, for instance, optimized spin and interaction
trajectories.

4.6.6 Universal Features of Impurity and Relation to Orthogonality
Catastrophe

For impurities localized in space, which, for instance, can be achieved by species-selective
three dimensional optical lattices, our experimental setup allows one to study universal
features exhibited by the Anderson orthogonality catastrophe [And67]. The orthogo-
nality catastrophe was originally studied in the context of x-ray absorption spectra in
metals, where high-energy x-ray photons create atomic core holes by photoemission of
inner-shell electrons [Mah90]. These core holes produce a scattering potential for the
electrons in the conduction band, leading to characteristic power-law edges in the ab-
sorption spectra with an exponent that is universally determined by the scattering phase
shift at the Fermi surface [And67]. However, impurities, phonons, residual interactions
between the electrons, and a lack of knowledge of microscopic parameters makes it diffi-
cult to unambiguously determine the universal features of the orthogonality catastrophe
in typical solid state materials [Oht90]. In contrast, the Hamiltonian in our experiment
is well characterized on all relevant energy scales, and therefore the full dynamic response
of the system can be reliably calculated by theory and probed by the ultrafast experi-
mental techniques demonstrated in this work. This enables one to obtain fundamental
insights into universal features of the orthogonality catastrophe, which are difficult to
access in other systems. To illustrate how the orthogonality catastrophe would manifest
itself in an ultracold atomic gas experiment, the response of infinite mass impurities
calculated using the FDA for the perfect quench scenario is shown in Fig. 4.15. First,
at short times and for a range parameter of the Feshbach resonance R∗ > 0, we see that
the Ramsey contrast decays quadratically for all scattering parameters and temperatures
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considered, in accordance with Eq. (4.11). The main universal feature associated with
the orthogonality catastrophe is expected in the long-time dynamics at T = 0: Here,
the Ramsey response is predicted to exhibit power law tails, which depend only on the
scattering phase shift at the Fermi surface [And67, Kna12]. This is explicitly verified in
Fig. 4.15A where we fix the scattering phase shift at the Fermi surface but change the
scattering parameters. While the response at intermediate times depends on the scat-
tering parameters, we see that the long-time evolution approaches a universal power law
that only depends on the phase shift at the Fermi surface. We note that the long-time
dynamics is universal: It is the same for a system with a broad resonance where R∗ = 0

(solid line in Fig. 4.15A), as it is for our system with a finite range parameter (dashed
and dotted lines).
When the temperature is non-zero, as in the experiment, thermal fluctuations alter the
power law dephasing dynamics at sufficiently long times. Instead, exponential tails due
to thermal decoherence appear as another universal feature of the dynamics [Kor50,
And67, Yuv70, Kna12]. The exponential tails are illustrated in Fig. 4.15B. The effects
of thermal decoherence could be countered by employing the recently developed cool-
ing methods [Har15], opening the door to observing the orthogonality catastrophe in a
cold-atom system.
Finally, we note that in our experiment temperature becomes relevant at a time scale
similar to those associated with recoil and multiple particle-hole excitations. It is a
challenge for theoretical approaches to exactly account for both recoil and higher order
particle-hole excitations [Ros99]. However, experiments at lower temperatures which
take advantage of the tunability of the impurity mass using optical lattices would be
ideally suited to probe the competition between these effects. Such ultracold-atom ex-
periments would hence provide important insight into this longstanding theoretical ques-
tion.
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Figure 4.15: Universal features of the dynamical orthogonality catastrophe.
We show the Ramsey contrast for an infinitely heavy impurity obtained within the
FDA. (A) The zero-temperature Ramsey contrast exhibits a power law decay, shown
on a double logarithmic scale. We change the Feshbach resonance range kFR∗ and
interaction parameter X in such a way that the scattering phase shift at the Fermi
surface is constant leading to a constant exponent of the power law tail. The data
corresponds to a fixed phase shift δkF = 1.4 with the choices (X, kFR

∗) = (1, 1.12)
(dashed red), (X, kFR

∗) = (0.58, 0.56) (dotted blue), and (X, kFR
∗) = (0.15, 0) (solid

green). (B) Ramsey contrast at various temperatures on a double logarithmic scale.
We choose temperatures T/TF = 0 (blue), 0.05 (green), 0.15 (orange), 0.4 (red) at fixed
values X = 1 and kFR∗ = 1.12. The inset shows the same data on a logarithmic-linear
scale to emphasize the appearance of exponential tails at finite temperature.
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5.1 Abstract

We measure the temperature of a deeply degenerate Fermi gas, by using a weakly inter-
acting sample of heavier bosonic atoms as a probe. This thermometry method relies on
the thermalization between the two species and on the determination of the condensate
fraction of the bosons. In our experimental implementation, a small sample of 41K atoms
serves as the thermometer for a 6Li Fermi sea. We investigate the evaporative cooling
of a 6Li spin mixture in a single-beam optical dipole trap and observe how the con-
densate fraction of the thermometry atoms depends on the final trap depth. From the
condensate fraction, the temperature can be readily extracted. We show that the lowest
temperature of 5.9(5)% of the Fermi temperature is obtained, when the decreasing trap
depth closely approaches the Fermi energy. To understand the systematic effects that
may influence the results, we carefully investigate the role of the number of bosons and
the thermalization dynamics between the two species. Our thermometry approach pro-
vides a conceptually simple, accurate, and general way to measure the temperature of
deeply degenerate Fermi gases. Since the method is independent of the specific interac-
tion conditions within the Fermi gas, it applies to both weakly and strongly interacting
Fermi gases.

5.2 Introduction

Since the first demonstration of Fermi degeneracy in an ultracold gas [DeM99], ex-
perimental progress has provided unprecedented access to a great wealth of exciting
phenomena, as highlighted by the prominent example of a crossover superfluid [Zwe12].
The great interest in fermionic quantum gases results from the fact that fermions consti-
tute the elementary building blocks of matter and provide the possibility to investigate
various phenomena of strong interactions. The experimental availability of degenerate
Fermi gases has led to new insights into intriguing few- and many-body behavior, the
many facets of which are studied in a great variety of current experiments.
The lowest achievable temperature is crucial for the experimental observation of many
phenomena. While fermionic superfluidity [Pit16] is now routinely achieved in many ex-
periments worldwide, other phenomena like antiferromagnetic ordering [Har15] require
much lower temperatures, which are still very hard to obtain experimentally. In the
range of very low temperatures, well below one tenth of the Fermi temperature TF ,
thermometry becomes increasingly difficult. In deeply degenerate Fermi systems, one
faces the general problem that only a small fraction of atoms near the Fermi surface
carry the temperature information, which reduces the detection sensitivity for common
imaging methods. For strongly interacting systems, the interpretation of density profiles
is not straightforward and requires detailed knowledge of the equation of state [Luo07,
Nas10, Ku12] to extract temperature information from thermodynamic observables. For
the specific case of a unitary Fermi gas with resonant interactions, where thermodynam-
ics follows universal behavior [Ho04], thermometry is now well established, but not for
the general situation of Fermi gases in strongly interacting regimes.
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The conceptually most simple way of thermometry is to use a probe in thermal equilib-
rium with the object under investigation and to rely on a phenomenon with an easily
detectable and well-understood temperature dependence. This is the working principle
of thermometers in our daily life, where the underlying phenomenon is thermal expan-
sion or temperature-dependent resistivity. We apply the same basic idea to a deeply
degenerate Fermi sea, using a small sample of weakly interacting bosonic atoms as a
probe, and we rely on the sensitive detection of the condensate fraction.
Our Fermi gas is a spin mixture of deeply degenerate 6Li atoms with resonantly tuned
interactions, as it is used in many current experiments worldwide. For such a system,
temperatures around 10% of the Fermi temperature TF or even below have been re-
ported by various groups (see [Yef13, Lin14, Bur14, Del15, Rev16] for a few recent
examples). Our thermometer is a small sample of bosonic 41K atoms immersed in the
Fermi sea. In addition to the condensate formation serving as the main observable, our
system takes advantage of the large mass ratio and the much smaller number of bosons
as compared to the fermions. Related thermometry approaches that rely on coupling to
a weakly interacting probe component, have been implemented in other Bose-Fermi sys-
tems [Roa02, Fer14, Del15, Ono16], in population-imbalanced spin mixtures [Zwi06a],
and in a Fermi-Fermi mixture [Spi09], but without combining all these three advantages.
For our system, the critical temperature for Bose-Einstein condensation (BEC) corre-
sponds to about 0.1TF , which makes the condensate fraction a sensitive and accurate
probe right in the temperature range of main interest for deep cooling.
In this paper, we present a thorough experimental investigation of Fermi gas thermom-
etry using a bosonic species. In Sec. 5.3, we discuss the basic principle of thermometry
for a Fermi-Bose system in general and for the particular case of our mixture of 6Li and
41K. We then, in Sec. 5.4, describe the experimental procedures of preparation, cooling,
trapping, and detection. In Sec. 5.5, we present the main experimental results on deep
cooling of the 6Li spin mixture, as probed by the 41K BEC.

5.3 Bosons as a Fermi gas thermometer

Here, we first discuss the basic idea of our thermometry approach in general terms,
before we turn our attention to the specific case of 41K bosons in a 6Li Fermi sea.

5.3.1 Basic idea

The basic idea of our thermometry approach is illustrated in Fig. 5.1. We assume that
both harmonically trapped species are in sufficient thermal contact with each other to
establish a thermal equilibrium with a common temperature T . The main observable is
the condensate fraction β of the bosonic cloud, from which T can be derived.
To obtain the temperature T of the two-component system in relation to the Fermi
temperature TF , we start with the identity T/TF = (T/Tc) × (Tc/TF ), where Tc is the
critical temperature for BEC. The first factor, T/Tc, can readily be obtained from the
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F

B

Figure 5.1: (Color online) Basic idea of the thermometry. A small sample of bosonic
atoms (B) is immersed in a large, deeply degenerate sea of fermions (F) under thermal
equilibrium conditions. The harmonic trapping potentials (solid lines) are different for
both species, depending on the particular trapping configurations used. The tempera-
ture is derived from the condensate fraction.

condensate fraction of the bosonic component through the well-known relation

T

Tc
= (1− β)1/3 . (5.1)

For calculating Tc/TF we use the textbook formulas

kBTc = 0.940 ~ωB N
1/3
B , (5.2)

kBTF = 1.817 ~ωF N
1/3
F , (5.3)

where NB and NF represent the number of trapped bosons and fermions, and ωB and
ωF are the respective geometrically averaged trap frequencies. Note that Eqs. (5.1) and
(5.2) are strictly valid only for non-interacting systems in the thermodynamic limit. In
practice, the finite sample size and interaction effects may lead to corrections [Gio96].
By combining Eqs. (5.1)-(5.3) we arrive at the central equation that underlies our ther-
mometry approach,

T

TF
= 0.518 (1− β)1/3 ωB

ωF

(
NB

NF

)1/3

. (5.4)

In an experiment, the ratio of the trap frequencies, ωB/ωF , will be determined by the
specific properties of the two different components and the particular trap configuration
used for the experimental realization.
Equation (5.4) highlights the conditions for optimized thermometry in the deeply de-
generate regime. A small ratio of the trap frequencies, ωB/ωF , is highly desirable. This
favors heavy bosons in combination with light fermions. The number ratio NB/NF en-
ters with its third root, which shows that a very large number imbalance (NB � NF ) is
required to take real advantage of this factor. In this case, the bosons can be considered
as impurities in the large Fermi sea.

5.3.2 Case of the 6Li-41K mixture

We now turn our attention to the specific situation of bosonic 41K atoms in a Fermi sea
of 6Li atoms. The mixture [Wu11, Yao16] exhibits favorable properties for our purpose.
The interspecies interaction is moderate, with a background scattering length of about
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+60 a0
1, where a0 is Bohr’s radius. This is large enough to provide a sufficient cross

section for thermalization on a realistic experimental time scale, but weak enough to
avoid effects of strong interactions, such as a mutual repulsion or attraction or fast
three-body decay.
We consider a hybrid trapping scheme, as realized in our experiment, where the atoms
are confined radially by an infrared laser beam and axially by a curved magnetic field
(see Sec. 5.4.2), under conditions ensuring that the trap frequency ratio for the two
species is not changed by the gravitational sag (see Appendix 5.8). For such a trap, in
a harmonic approximation, the frequency ratio in Eq. (5.4) can be expressed as

ωB
ωF

=

(
mK

mLi

)−1/2(αK
αLi

)1/3( µK
µLi

)1/6

, (5.5)

For our experimental situation (Sec. 5.4.2), the mass ratio is mK/mLi = 6.810, the ratio
of optical polarizabilities is αK/αLi = 2.209 [Tan10, Saf13], and the ratio of magnetic
moments is µK/µLi = 0.999. With these accurately known numbers, Eqs. (5.4) and (5.5)
yield

T

TF
= 0.258 (1− β)1/3

(
NB

NF

)1/3

, (5.6)

which we will use for extracting T/TF from our experimental data, as described in the
following sections.
The dynamical range of our thermometry approach as applied to the 41K-6Li mixture
can now be illustrated by a numerical example, based on typical experimental conditions.
We assume NB/NF = 1/30 and possible measurements of the condensate fraction in the
range 0 ≤ β . 0.95. According to Eq. (5.6), this corresponds to a temperature range of
0.03 . T/TF . 0.08, right in the interesting regime for state-of-the art experiments in
the deeply degenerate Fermi gases.

5.4 Experimental procedures

In this section, we present our general experimental procedures applied to a Fermi-Bose
mixture of 6Li and 41K. In Sec. 5.4.1, we give an overview of the main preparation steps.
In Sec. 5.4.2, we present in detail the optical dipole trap used in the final stage of deep
evaporative cooling. In Sec. 5.4.3, we discuss the main detection schemes.

5.4.1 Preparation of the 6Li-41K mixture

The mixture is prepared in an all-optical cooling and hybrid trapping approach, very
similar to the one described in detail in Ref. [Spi10] and applied in various previous
experiments on the mixture of 6Li and 40K atoms (see, e.g., Refs. [Spi09, Tre11, Koh12,
Jag14, Cet16]). A spin mixture of 6Li atoms in the lowest two sublevels of the electronic
ground state is evaporatively cooled close to a Feshbach resonance [O’H02, Bou03, Joc03]

1T. Hanna and E. Tiesinga. (private communication)
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and serves as the agent to sympathetically cool a K minority component. For the whole
cooling process, we found that it makes no difference whether the fermionic 40K or the
bosonic 41K isotope is present, if we avoid any interspecies scattering resonances and
rely on the background interaction with the 6Li cooling agent, being about the same for
both K isotopes.
The preparation process involves a spin relaxation stage, which we employ to prepare a
single K spin state. Here, the parameters differ from our previous work on 40K [Spi10].
For 41K, the initial laser cooling stage provides an unpolarized sample in the three
magnetic sublevels (mF = −1, 0, 1) of the lowest hyperfine level (F = 1). We found
[Lou18a] that spin-exchange collisions with 6Li atoms in the second-lowest sublevel can
efficiently produce a polarized 41K sample in the mF = −1 state, which is the third-
lowest Zeeman sublevel. The spin relaxation is performed near a magnetic field of
200G, where the process appears to be resonantly enhanced. This stage has a duration
of about 500ms and is implemented right after loading the optical dipole trap, when the
temperature is still rather high (few 100µK). To remove a residual population of K in
the mF = 0 state (typically 15%), we apply a resonant laser pulse right before the final
evaporation stage to push those atoms out of the trap. It is interesting to note that,
without applying the spin cleaning, the evaporation process leads to a spinor condensate
[Sta13] with clear signatures of immiscibility [Liu16]. The s-wave background interaction
between the bosons is relatively weak (intraspecies scattering length of +60 a0 [D’E07,
Pat14]), which makes the condensate very stable against three-body decay.

5.4.2 Trap for deep evaporative cooling

The whole evaporation process takes place in several stages [Spi10] within a total time
of 12 s. Here, we focus on the final stage, where the power of a single laser beam is
ramped down exponentially within 5 s, from an initial value of 440mW to a final value
in the range between 110 and 45mW. Then, a hold time of 10 s is introduced to ensure
full thermalization, before the two species are finally detected; see Sec. 5.4.3. As in our
previous work [Spi09, Tre11, Koh12, Jag14, Cet16], the magnetic bias field of 1180G
is applied for standard Feshbach tuning of the interaction between the two 6Li spin
components. This leads to a large negative s-wave scattering length of a = −2900 a0

[Zür13], and thus facilitates highly efficient evaporative cooling with very low inelastic
losses. We note that, because of the absence of any significant losses, the number of K
atoms stays essentially the same during the whole evaporative cooling process.
We hold the spin mixture of 6Li together with the single spin state of 41K in a hybrid
trap [Joc03] as illustrated in Fig. 5.2(a). Here, the radial confinement (y, z directions) is
provided by a single 1064-nm laser beam and the axial confinement (x direction) results
from the curvature of the applied magnetic field. In the vertical direction, gravity also
comes into play and decreases the trap depth, which influences both species differently.
We apply an additional magnetic levitation field to compensate for the latter effect. The
levitation potential is given by

Ulev(z) = −µBB′z , (5.7)
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Figure 5.2: (Color online) Trapping scheme in the final stage of evaporative cooling.
(a) A single infrared laser beam for radial trapping (y, z directions) is used in com-
bination with a magnetic field (coil setup schematically shown). The magnetic field
serves multiple purposes, providing the bias field for Feshbach tuning, a curvature for
axial trapping (x direction), and a vertical levitation gradient. (b) The vertical poten-
tials U itot(z) resulting from Eq. (5.8) for both Li (blue) and K (magenta) are shown
for a typical laser power of P = 75mW. For illustrative purposes, we have introduced
species-dependent offsets to shift the potential minima to zero. (c) The trap depths
U itrap depend on the laser power P , with the K trap being always deeper than the Li
trap.

where µB is Bohr’s magneton and B′ represents the vertical gradient of the magnetic
field. Note that for our high bias magnetic field of 1180G the levitation potential
is essentially the same for both species, since the magnetic moments of both species
are within 0.1% close to µB. We use a gradient of 2.5(2)G/cm, for which we obtain
µBB

′/mKg = 0.34(3), i.e., we realize a partial levitation of the K atoms by compensat-
ing one-third of the effect of gravity (gravitational acceleration g). For Li, we obtain
µBB

′/mLig = 2.36(20), which means a strong overlevitation. These conditions are close
to a “magic” levitation condition, where the combined tilt effect of gravity and levitation
on the trap depth is the same for both species; see Appendix 5.8 for a detailed descrip-
tion.
For both species (i =Li, K), the total potential along the vertical direction in the trap
center can be written as

U itot(z) = −U iopt exp(−2z2/w2)

+(mig − µBB′)z −
1

2
µBB

′′z2 , (5.8)

where U iopt is the optical potential depth and w is the waist of the single optical beam.
The combined effect of gravity and magnetic levitation is represented by the term linear
in z. The quadratic term describes a weak magnetic antitrapping effect, resulting from



70 Thermometry of a deeply degenerate Fermi gas with a Bose-Einstein condensate

the negative curvature of the magnetic field. In the saddle-potential of our configuration
[Fig. 5.2(a)], the curvature along the z axis is two times larger and of opposite sign as
compared to the curvature along the x axis, the latter determining the axial magnetic
confinement. Therefore, the curvature B′′ is related to the axial trapping frequency ωix
by the formula µBB′′ = 2mi(ω

i
x)2.

The vertical trap potentials are shown in Fig. 5.2(b) for both Li and K atoms under
typical conditions of our experiment (P = 75mW). This clearly illustrates the different
optical potentials and the effect of the opposite tilt on both Li and K. The tilt and the
curvature substantially reduces the total trap depths U itrap to values below the respective
depths of the optical potentials (U itrap < U iopt).
Figure 5.2(c) illustrates the dependence of the trap depths U itrap on the laser power in
the range relevant for our final evaporative cooling stage. It is important to note that
UK
trap > ULi

trap is always fulfilled. The effect of the magnetic levitation ensures that evap-
orative cooling removes Li atoms, but leaves all K atoms in the trap. This is essential
for our interpretation of the cooling process, where Li acts as the cooling agent and K
is cooled sympathetically via collisions with Li and not directly.
We characterize the trap by measuring the frequencies of radial and axial sloshing os-
cillations of both the confined species. For the radial trap frequencies of Li and K, we
find

ωLi
r = 2π × 37.6(5)Hz ×

√
P/mW , (5.9a)

ωK
r = 2π × 21.0(6)Hz ×

√
P/mW , (5.9b)

where P is the power of the trapping beam. The measured frequency ratio ωLi
r /ω

K
r =

1.79(6) is consistent with the more accurate value of 1.756 as calculated from the dynamic
polarizabilities [Tan10, Saf13] and the mass ratio. For the single-beam optical dipole
trap, assuming a Gaussian laser beam profile, we then obtain [Gri00] the waist w =

44.3µm and the optical potential depths

ULi
opt/(kB × nK) = 19.8(3)P/mW , (5.10a)

UK
opt/(kB × nK) = 43.7(6)P/mW . (5.10b)

For the axial frequencies, characterizing the magnetic confinement, we obtain

ωLi
x = 2.61ωK

x = 2π × 25.6(1)Hz . (5.11)

We note that, for the trap frequencies, the optical contribution to the axial trapping and
magnetic effects on the radial confinement remain negligibly small. Furthermore, the
levitation field that counteracts gravity leaves the oscillation frequencies at the bottom
of the trap essentially the same [Hun08], in spite of its substantial effect on the trap
depths. This ensures that the frequencies according to Eqs. (5.9a) and (5.9b) remain a
very good approximation for all our experimental conditions.
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5.4.3 Detection

For detection of the two species we apply standard time-of-flight absorption imaging,
realized with probe beams propagating along the z axis. From images of the 6Li cloud,
we selectively determine the number NF of fermionic atoms in each of the two lowest
spin states with relative uncertainties of about 15% [Cet15]. For 41K, we detect the
number NB of bosonic atoms in the third-to-lowest spin state with an estimated relative
uncertainty of 15%. From the images of the bosons, we also extract the condensate
fraction β, which is the quantity of main interest for our thermometry approach.
Time-of-flight absorption imaging of the expanding 41K component can, in principle, be
implemented by turning off the trapping laser beam and letting the cloud expand in the
same magnetic field configuration as it is used for evaporative cooling. However, in such
a simple scheme, the magnetic field curvature causes a focusing effect [Don01] in the
x, y plane (oscillation frequency ∼10Hz), which occurs right in the time interval of main
interest for the imaging. For analyzing the ballistic expansion of the thermal cloud, it
is rather straightforward to take the focusing effect into account [Ket08], so that the
temperature can be readily extracted. For the condensed part, however, the focusing
effect leads to an increase of the density and the optical depth of the cloud, which makes
a determination of the condensate fraction problematic.
We employ a modified scheme for time-of-flight absorption imaging, where we adiabat-
ically transform our hybrid trap into a purely optical one, before the cloud is released
into free space. To prevent any effect of interspecies interaction in the transfer stage, we
remove the Li atoms before the transfer into the crossed-beam trap by smoothly apply-
ing a short stage with a magnetic gradient of about 8G/cm, which levitates the K cloud
and spills all Li atoms out of trap. Then we slowly ramp up a second trapping beam,
which has a fixed final power of P ′ = 70mW, and a waist of ∼ 50µm and crosses the
first beam under an angle of 16◦ [Cet15]. The magnetic field is simultaneously changed
to a homogenous configuration without curvature, but with the same bias field. The
potential of the resulting crossed-beam dipole trap is similar to the hybrid trap of the
evaporation stage and the transfer is realized over a rather long time of 4 s, which en-
sures adiabaticity of the process. The transfer into the detection trap, being somewhat
tighter than the cooling trap, implies a moderate adiabatic compression. This increases
the temperature by a factor of roughly 1.5, as easily obtained from the ratio of the trap
frequencies 2. This factor is taken into account when we determine the temperature of
the thermal component from the temperature of the expanding cloud. To image the
expanding cloud after time of flight, we apply a levitation field that counteracts gravity
and facilitates long observation times up to 45ms.
We have performed several tests on the performance of our detection scheme. We have
carefully checked that the adiabatic transfer stage does not lead to any detectable loss
of K atoms and that its influence on the condensate fraction remains negligibly small.

2At an intermediate power of P = 75mW, the geometrically averaged trap frequency increases from
69 to 109Hz. The frequency ratio depends on the value of P , but quite weakly. We have carried out
measurements on the trap frequencies in the crossed-beam detection trap, from which we determine the
change in trap frequencies with an accuracy of about a few percent.
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5.5 Cooling and thermometry results

In this section, we present our experimental results. We focus on the final stage of
the deep evaporative cooling process, where the lowest temperatures are achieved. In
Sec. 5.5.1, we consider the fermionic 6Li component only and identify the conditions
where cooling crosses over into spilling of the Fermi sea. In Sec. 5.5.2, we turn our
attention to the bosonic 41K component and present measurements of the condensate
fraction and the temperature, which allows us to determine T/TF for the Fermi gas. In
Sec. 5.5.3, we investigate the interspecies thermalization process, justifying the assump-
tion of interspecies thermalization. In Sec. 5.5.4, we finally discuss the performance of
our thermometry scheme in terms of measurement uncertainties and systematical effects.

5.5.1 Crossover from evaporation to spilling

In the final stage of evaporative cooling, when the laser power is reduced to very low
values, a crossover between two regimes takes place [Joc03]. Above a certain threshold,
the continuous reduction of the trap power removes thermal atoms with some excess
energy above the Fermi energy level, which efficiently cools down the sample. Then a
threshold is reached where the Fermi energy level in the shallow trap reaches the trap
depth. Below that threshold, the atoms are spilled out of the trap. We identify this
crossover by measuring the number of 6Li atoms remaining in the trap as a function of
the final trap power at the end of the evaporation ramp.
Figure 5.3 shows our observations for a final trap power P between 45 and 110mW.
The crossover between the two different regimes can be clearly seen in the behavior of
both the atom numbers (a) and the resulting Fermi energies (b). The results reveal a
change between 70 and 80mW, which marks the crossover into the spilling regime. This
interpretation is further confirmed by the behavior of the trap depth, as calculated from
Eq. (5.8). Below a power of about 70mW, the corresponding solid line in (b) gets very
close to the data points and shows essentially the same slope 3. It is also interesting to
note that the spilling effect removes a small initial imbalance in the population of both
spin states.
As we will see in Sec. 5.5.2, the deepest cooling takes place in the discussed crossover
regime. We therefore summarize the relevant experimental parameters at P = 75mW,
where we have NF = 2.0× 105 atoms per spin state in a trap with an average frequency
ωF = 2π×140Hz. This results in a Fermi energy of EF = kB×710 nK, corresponding to
a peak number density of nF = 1.3× 1012 cm−3 per spin state and a Fermi wavenumber
of kF = 1/(4500 a0).
The interaction in the spin mixture [Zwe12] is characterized by the parameter 1/(kFa) ≈
−1.6, which shows that our gas is not in the strongly interacting regime as defined
by |1/(kFa)| < 1, but also not far away from it. The attraction in the gas can be
estimated [Nav10] to have ∼10% effect on the chemical potential and the number density
as compared to the interaction-free values. We point out that this does not play any role

3The Fermi energy is calculated in the harmonic approximation. We estimate that the anharmonicity
of the trap leads to an error on the order of 5%.
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Figure 5.3: (Color online) Crossover from the cooling to the spilling regime in deep
evaporative cooling of 6Li. In (a), we show the measured dependence of the atom
number in both spin states as a function of the laser power P , which decreases during
the evaporation ramp. Here the labels Li 1 and Li 2 refer to the lowest and second-
to-lowest spin state of Li, respectively. The systematic calibration uncertainty in the
number determination (±15%) is indicated by the shaded error band. In (b), we plot
the corresponding behavior of the Fermi energy EF and compare it with the decreasing
trap depth ULi

trap (solid line). The shaded region indicates a systematic uncertainty in
the trap depth resulting from the determination of the levitation gradient, which we
consider as the dominant error source for EF .

for our thermometry approach, because we probe the temperature with another species.
This is in contrast to temperature measurements that are based on the size and shape of
the trapped cloud. The latter require knowledge of the temperature-dependent equation
of state [Ku12] for the particular interaction conditions.

5.5.2 Condensate fraction and equilibrium temperatures

Here, we first present our measurements of the condensate fraction, from which we derive
the relative temperature T/TF . Then we compare these results with direct temperature
measurements of the thermal fraction of the bosons, and we finally investigate how the
number of bosonic atoms affects our results.
Figure 5.4(a) shows the BEC fraction β, measured as a function of the final power P
of the evaporation ramp. Each data point is the mean derived from images taken at
seven different times of flight (12 to 24ms), with the corresponding standard error of the
mean. The total number of bosonic 41K atoms is NB ≈ 1.3×104, independent of P . We
locate the condensation threshold somewhere near 125mW and, with decreasing power,
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Figure 5.4: Fermi gas thermometry based on partially condensed bosons. (a) The
measured condensate fraction β is shown as a function of the final power P of the
evaporation ramp. Here the small error bars (most of them smaller than the symbol
size) reflect the uncertainties of bimodal fits to time-of-flight images. In (b), we show the
corresponding results for the relative temperature T/TF . Here the error bars reflect
the total statistical uncertainties from fitting the condensate fraction and the atom
numbers, but not the calibration uncertainties in the atom numbers. The latter result
in an additional systematic scaling uncertainty of ±7%.

we observe a steady increase of the condensate fraction until a maximum of β ≈ 0.8 is
reached near 75mW. The conditions of the Fermi sea of 6Li atoms are exactly the ones
already described in the preceding section.
Using Eq. (5.6) and applying small finite-size and interaction corrections to the critical
temperature [Gio96], we derive the relative temperature T/TF for the degenerate Fermi
gas 4. The results are shown in Fig. 5.4(b). We observe lowest values of T/TF ≈ 0.07

for P between 70 and 85mW. This power range corresponds to what we have identified
before as the crossover regime between evaporative cooling and spilling. In the spilling
regime, we see an increase in the relative temperature, due to a fast spilling of the Li
atoms. We conclude that the deepest degeneracy of the Fermi gas is achieved when the
evaporation is stopped just before the onset of spilling.
Figure 5.5 displays the absolute temperature T derived according to Eqs. (5.1) and (5.2)
from the BEC fraction data already presented in Fig. 5.4(a). We compare these results
with the temperature of the thermal component, which we extract from the same time-
of-flight images by fitting the expansion dynamics. The comparison shows that both

4Finite-size effects and interaction effects lead to small downshifts of Tc. To derive the tempera-
ture from the condensate fraction, for the sake of simplicity, we use Eq. (5.1) with corrections to Tc
from [Gio96]. Even at our smallest atom numbers, the temperature corrections stay well below 10%.
Interaction corrections in our largest clouds stay below 2%.
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Figure 5.5: Comparison of two methods to obtain the temperature from time-of-flight
images. The filled symbols represent the temperatures determined from the condensate
fraction [see data in Fig. 5.4(a)] together with the total number of bosons and the
separately measured trap frequency. The open symbols represent the temperatures
that result from the expansion of the thermal component of the bosonic cloud. For
the closed symbols, most of the errors derived are smaller than the symbol size. These
errors represent the statistical uncertainties as derived from measurements at seven
different expansion times. For the open symbols, the error bars are the uncertainties
from fits to the expansion dynamics.

methods provide consistent results, but it also reveals much smaller statistical uncer-
tainties (see error bars) for the first method. This observation highlights an important
advantage for accurate thermometry of our method that is based on the determination
of the condensate fraction.
In an additional set of experiments, we have addressed the question of whether the pres-
ence of the 41K bosons has an influence on the cooling of the Fermi gas. We therefore
reduced the number of K atoms from about 15,000 (similar to Fig. 5.4) down to about
7500. Here, for the sake of shorter data acquisition time, we applied a simpler, but
somewhat less accurate detection scheme than before 5. In Fig. 5.6, we show the results
for four different values of the K atom number. The BEC fraction in (a) decreases for
a reduced number of bosons, but this can be fully attributed to the reduced critical
temperature. The relative temperature in (b) shows a significant decrease for the lowest
number of bosons.
Our results show that a reduction of the number of K atoms slightly improves the cool-
ing performance of the Li Fermi gas. We interpret this observation as a consequence of
the weak additional heat load associated with the bosons, which has to be removed by
the evaporative cooling process. However, we do not observe any significant effect on
the temperature of the Fermi sea if the number of K atoms stays below 12,000, which
corresponds to about 3.0% of the total number of 6Li atoms. The lowest temperature
that we have observed in these measurements corresponds to T/TF ≈ 0.06.

5In Fig. 5.6, we have used a single time of flight of 22ms to reduce the total measurement time. This
method may be somewhat less accurate, but produces results fully consistent with the method used in
Fig. 5.4.
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Figure 5.6: Influence of the number of bosons on (a) the condensate fraction β and
(b) the resulting relative temperature T/TF . Four different data sets are shown, with
different numbers of bosonic K atoms: black squares, NB = 1.5(1) × 104; red circles,
1.2(1)× 104; blue triangles, 0.9(1)× 104; green diamonds, 0.76(6)× 104. The error bars
represent the statistical uncertainties as derived from the fit errors of the condensate
fraction.

5.5.3 Thermalization and heating dynamics

A central assumption underlying our paper is thermal equilibrium between the boson
“thermometer"and the Fermi sea. In order to test the validity of this assumption we have
investigated the thermalization dynamics and residual heating effects that may affect our
results. In all experiments discussed before, a hold time of 10 s was introduced between
the end of the evaporation ramp and the temperature measurement. We now present
measurements on the temperature evolution during this hold time at a constant trap
power of P = 75mW, again based on the detection of the condensate fraction. Figure
5.7(a) shows how the temperature drops from about 78 nK right after the evaporation
ramp to its equilibrium value of 53 nK. An exponential fit yields a thermalization time
scale of 2.5(5) s, which is short compared with the total hold time of 10 s. This ensures
that the K cloud reaches its equilibrium temperature with negligible deviations well
below 1 nK.
The thermalization time can be estimated from our experimental parameters, using the
approximation

1

τ
= 2 · 3T

2TF
· ξ

3
· nFσvF , (5.12)

which is a product of four factors. The prefactor of 2 accounts for the two different spin
states in the Fermi sea. The factor 3T/(2TF ) ≈ 0.1 results from the Pauli blocking of
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Figure 5.7: Thermalization and heating dynamics with and without the Fermi sea.
(a) The data points show the measured temperature evolution of the bosonic 41K cloud
[NB = 1.6(2) × 104] after evaporative cooling of the 6Li Fermi sea. The solid curve is
an exponential fit, yielding a relaxation-time constant of 2.5(5) s. (b) The data points
display the measured temperature increase of the 41K cloud after full removal of the 6Li
coolant. The linear fit (solid line) yields a heating rate of 0.49(4) nK/s. The error bars
represent the temperature uncertainties as derived from the fit errors of the condensate
fraction.

collisions 6. The third factor 3/ξ estimates the number of elastic collisions needed for
thermalization, with ξ = 4mKmLi/(mK + mLi)

2 ≈ 0.45 for the specific mass ratio of
our mixture [Mud02]. The last factor represents the elastic collision rate in the limit of
relative velocities dominated by the light atoms at the top of the Fermi sea, with the
corresponding Fermi velocity vF =

√
2EF /m ≈ 44mm/s. The cross section for elastic

collisions between 6Li and 41K atoms is σ ≈ 1.3×10−16 m27. This results in a relaxation
time of τ ≈ 4.5 s, which is larger than the observed value, but still within the errors of
the simple estimation used.
We have also checked the influence of a possible effect of residual heating of the K cloud,
which may be induced by trap light fluctuations. This heat would have to be removed by
thermal contact with the coolant, i.e., the Fermi sea of 6Li atoms, and the corresponding
heat flow would require a temperature difference between the two components. We have
experimentally investigated the heating of the K cloud after removing the Li atoms
from the trap, by application of a magnetic gradient, and observed the temperature
evolution over 30 s. Figure 5.7(b) reveals a very weak temperature increase, with a slope
corresponding to a heating rate of γheat ≈ 0.5 nK/s. Here, for simplicity, we assume a
linear heating model. With the relaxation time τ ≈ 2.5 s discussed before, we obtain

6We approximate this effect by assuming that only the fraction of Li atoms with energies in an
interval between kB(TF − T/2) and kB(TF + T/2) is thermally active. The factor 3/2 results from the
number of states, which increases ∝ E3/2 for the approximately homogeneous environment sampled by
the bosons in the trap center.

7T. Hanna and E. Tiesinga. (private communication)
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a temperature difference of γheatτ ≈ 1.2 nK, which is negligibly small. In additional
experiments, we have investigated heating in our detection trap, see Sec. 5.4.3, and
found an effect of less than 2nK/s within the 4 s when the atoms are kept in this trap.

5.5.4 Uncertainities

Our thermometry approach is based on Eq. (5.6) to determine the relative temperature
T/TF . The underlying model relies on the harmonic approximation of the trap poten-
tial, and we estimate that anharmonicity effects on TF do not exceed a few percent.
The model also assumes the bosonic probe to be a weakly interacting gas, which is well
fulfilled. We have checked that we are not near any intraspecies or interspecies Fesh-
bach resonances. Furthermore, the intraspecies background scattering length of 41K is
about +60 a0 [D’E07, Pat14] and the background scattering length between 6Li and
41K is also about +60 a0

8. This means that for the reference power (P = 75mW) and
NB ≈ 1.2× 104, the chemical potential of the bosons corresponds to ∼ 16 nK. The peak
number density of the fermions is about 26 times smaller than the one of the bosons.
The mean field of the fermions as seen by the bosons is very small, only ∼ 2.3 nK. The
correction to the boson trap frequencies caused by the fermion mean field, is on the
order of 10−3 , which is negligibly small. The mean field of the bosons on the fermions
corresponds to ∼ 64 nK, which is much smaller than the Fermi energy of about 710 nK.
In addition to these model assumptions, the experimental determination of the tem-
perature is subject to four main error sources. First of all, there are the statistical
measurement uncertainities. These come from the analysis of the time-of-flight images
and give uncertainties of a few percent in both the atom number and the determination
of the condensate fraction.
A second source that influences the measured values of T/TF are calibration errors. For
the atom number determination, we estimate calibration uncertainities of 15% for both
species. This results in a systematic scaling uncertainty in T/TF of ±7%. Another sys-
tematic error source is the trap frequency ratio, which slightly changes if the trap does
not exactly fulfill the magic levitation condition. However, the effect on T/TF for the
range of powers used in our experiments is negligibly small.
Third, the thermalization between the two species may be imperfect, owing to heating
in combination with weak thermal coupling. We estimate that the corresponding tem-
perature difference stays below 2 nK, which results in an effect below 3% on the relative
temperature.
Furthermore, as a fourth error source, we observed a slight heating effect during the
transfer into the detection trap, which may also affect the temperature by a few percent
at most. We are confident that other heating sources are very weak and can be safely
neglected. All these residual heating effects may somewhat increase the temperature of
the bosonic probe atoms, and may thus lead to an overestimation of the temperature,
but not by more than 10%.
Taking all statistical and systematic uncertainties into account, we can report a lowest

8T. Hanna and E. Tiesinga. (private communication)
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observed temperature of T/TF = 0.059(5) 9. The true temperature of the Fermi gas
may even be slightly below this value (about 5%) because of residual heating directly
affecting the thermometry atoms.

5.6 Conclusion

We have thoroughly investigated a conceptually simple and accurate method for deter-
mining the temperature of a deeply degenerate Fermi gas. Our method essentially relies
on detecting the condensate fraction of a second, weakly interacting bosonic species that
is thermalized with the Fermi sea. High accuracy of the temperature measurements can
be achieved, since the relevant trap frequency ratio can be very well determined and
uncertainties in the atom number only weakly influence the results.
We have employed the method in experiments on a spin mixture of 6Li, where we have
used a small sample of 41K bosons as the probe. The large mass ratio and a large number
ratio have enabled us to measure the temperature in the range of 0.03 to 0.1TF , which
is right in the regime of state-of-the art cooling experiments. We have investigated the
final stage of deep evaporative cooling and we have observed that the deepest degeneracy
of the Fermi gas, with T/TF = 0.059(5), is achieved when the evaporation is stopped
just before the onset of spilling. We found the temperature not to be affected by the
presence of the probe atoms if the number of K atoms stays below 3.0% of the number
of Li atoms. The K atoms then represent impurities in a Fermi sea.
Our thermometry method provides us with a powerful tool to further optimize the
cooling. For optimization, we can improve the starting conditions for evaporation by
implementing a sub-Doppler cooling stage [Bur14, Sie15] and we can optimize the evapo-
ration sequence by variation of the magnetic field, the trap configuration and the details
of the ramp. With sensitive and accurate thermometry, it will be very interesting to
investigate the practical and fundamental limitations of the cooling process. Under our
present conditions, we may be limited by residual trap light fluctuations [Sav97] or other
sources of noise in the experiment or by inelastic losses in combination with the hole
heating effect [Tim01].
For the interaction parameter of 1/(kFa) ≈ −1.6, as chosen in our experiments, the
predicted critical temperature for superfluidity is ∼ 0.03TF [Blo08, Hau07]. Thus, even
for our lowest temperatures, the Li spin mixture is not superfluid. However, the system
is stable enough at resonant interaction conditions [Spi09], so that the realization of a
mass-imbalanced Bose-Fermi double superfluid, as already demonstrated in Ref. [Yao16],
would be straightforward. Thermometry on the bosons could be performed in a wide
range of the BEC-BCS crossover, as long as the thermalization time stays much shorter
than the timescale of inelastic losses 10. While the BEC side may be problematic [Spi09],
the method would work well in the unitary case and on the BCS side.
The implementation of the presented thermometry method should be straightforward
for other Bose-Fermi mixtures. Extreme mass ratios [Pir14, Tun14, Roy17, Kon16] are

9The reported temperature is the mean value of the red circles, blue triangles, and green diamonds
in Fig. 5.6, in the range of 68− 80mW.

10Inelastic decay of 41K is observed predominantly on the BEC side of the 6Li Feshbach resonance,
similar to what was observed on a strongly interacting 40K-6Li mixture [Spi09]
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of particular interest for pushing the accessible regime further down to temperatures on
the order of 0.01TF . However, at such ultralow temperatures, the larger number of colli-
sions required for thermalization and the increasing Pauli blocking effect will increase the
thermalization time, which will make it more difficult to reach thermal equilibrium on
a realistic experimental time scale. This may be compensated for by larger interspecies
collision cross sections or higher number densities. Our paper shows how the conditions
can be optimized for specific mixtures, including the role of optical polarizabilities, mag-
netic moments, magnetic levitiation for trapping, and the effect of interspecies collisions.
In our future work, we are particularly interested in the deep cooling of the Fermi sea.
This reduces thermal decoherence effects as observed in studies of impurities coupled to
the Fermi sea [Cet15] and opens up the possibility of observing new phenomena [Cet16],
such as multiple particle-hole excitations and the onset of the orthogonality catastrophe
[Kna12]. Moreover, we are interested in the collective zero-temperature dynamics of
bosonic impurities in the Fermi sea close to an interspecies Feshbach resonance [Lou18b,
Hua19].
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5.8 Appendix: ‘Magic’ levitation trap

We refer to a ‘magic’ levitation trap as an optical dipole trap for two different species,
in which the corresponding potential depths and trap frequencies maintain a constant
ratio at any optical power applied. In optical dipole trapping experiments, one often
has to deal with the effect of gravity. Two species in the same trap are in general
affected differently, in particular in the case of largely different masses or different optical
polarizabilities. The tilted potentials usually give a different reduction of the effective
trap depth as compared to the depth of the optical potentials. During evaporative
cooling this often leads to a much faster reduction of the potential depth for the heavier
species than for the lighter one, which may pose a severe limitation to the whole cooling
process. Magnetic levitation [And95, Han01, Web03a] offers a solution to this problem
and allows one to realize conditions, where the combined effect of gravity and levitation
results in the same effect on the total shape of the potential.
The magic gradient can be derived from the condition that the combined magnetic
and gravitational force is the same for both traps, if considered relative to the optical
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Figure 5.8: (Color online) Illustration of magic levitation for 6Li and 41K. All po-
tentials are normalized to the optical potential depth of K, and zero potential refers to
the trapping potential minima. The combined magnetic and gravitational forces cause
a trap depth reduction, as indicated by the horizontal dotted lines. For two distinct
values of the magnetic gradient, see Eq. (5.14), the ratio of the resulting trap depths
for K and Li remains constant and corresponds to the ratio of optical polarizabilities
(αK/αLi ≈ 2.2). (a) With the magnetic gradient set to B′−, K is partially levitated,
while Li is overlevitated. The relative tilt has the same magnitude, but opposite sign.
(b) With the gradient set to B′+, the magnetic force effectively increases the effect of
gravity for both species, resulting in a tilt in the same direction.
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potential, the depth of which in turn is proportional to the optical polarizabilities. The
condition reads

µ1B
′
± −m1g

α1
= ±

µ2B
′
± −m2g

α2
, (5.13)

where mi, µi, and αi represent the different masses, magnetic moments, and optical
polarizabilities of the two species, respectively. The lower sign refers to the situation
illustrated in Fig. 5.8(a), where the trapping potentials are tilted in the opposite direc-
tion. The upper sign corresponds to the situation, where both potentials are tilted in
the same direction. Solving Eq. (5.13) yields the two corresponding magnetic gradients

B′± =
α2m1 ∓ α1m2

α2µ1 ∓ α1µ2
g . (5.14)

The solution B′− means partial levitation for one species and overlevitation for the other
one, so that the tilts have opposite signs. The other solution (B′+) corresponds to the
same direction of the tilt for both species. The application of B′− causes a separation of
the trap centers, similar to the gravitational sag effect. In contrast, B′+ does not cause
such a spatial shift, but it may imply much stronger tilts. The optimum solution for an
experiment depends on the specific situation.
For our situation of optically trapped 6Li and 41K at high magnetic bias fields (µ1 =

µ2 ≈ µB), we obtain a magic levitation gradient of B′− = 2.97G/cm, corresponding
to a partial levitation of 41.3% for K and an overlevitation of 281% for Li. The small
spatial separation of the trap centers is irrelevant for our application. For the experi-
mental power range we use, the separation between the trapcenters of the two species
lies between 12 and 28 % of the optical beam waist. Note that the other solution
(B′+ = −4.02G/cm) does not correspond to levitation, but to an effective increase of
the gravitational effect for both species. As described in Sec. 5.4.2, we realize a situation
close to the magic levitation gradient B′−.
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6.1 Abstract

We probe the interface between a phase-separated Bose-Fermi mixture consisting of a
small Bose-Einstein condensate of 41K residing in a large Fermi sea of 6Li. We quan-
tify the residual spatial overlap between the two components by measuring three-body
recombination losses for variable strength of the interspecies repulsion. A comparison
with a numerical mean-field model highlights the importance of the kinetic energy term
for the condensed bosons in maintaining the thin interface far into the phase-separated
regime. Our results demonstrate a corresponding smoothing of the phase transition in
a system of finite size.

6.2 Introduction

Multicomponent systems and materials are ubiquitous in nature and technology. The
interactions between the different constituents and the ways in which they coexist are
essential for understanding the general properties of such systems. Repulsive interac-
tions between different components can induce phase transitions to spatially separated
states. The effects of phase separation appear in a wide range of different systems such
as alloys, combinations of different liquids, colloids, polymers, glasses and biological sys-
tems. In a phase-separated state, the interaction between the components no longer
takes place in the bulk but is restricted to the thin interface where the constituents still
maintain some residual overlap. The physics of this interface has therefore attracted
a great deal of attention in many different fields, e.g. in liquid-liquid systems [Dav96,
Han13]. However, since the interaction takes place in a very small volume, it is generally
much more difficult to obtain experimental information from these systems as compared
to systems in which the components are mixed.
Quantum fluids exhibit a great wealth of phenomena related to phase separation. Early
experiments with cryogenically cooled liquid helium have shown phase separation in
mixtures of the bosonic isotope 4He and the fermionic 3He [Ebn71]. This effect has
found an important technological application in the working principle of dilution re-
frigerators [Das65, Pob07]. Ultracold gases, in particular, mixed-species systems have
opened up many intriguing experimental possibilities to study phases of multicompo-
nent quantum matter [Blo08]. The large experimental toolbox includes a variety of
available bosonic and fermionic constituents, a superb level of control of confinement,
and a wide tunability of interactions [Chi10]. Phase separation has been studied exten-
sively in degenerate Bose-Bose mixtures [Pap08, Toj10, McC11, Sta13, Wac15, Wan15,
Lee16], where interactions are dominated by mean-field potential energies. The sit-
uation becomes more complicated when fermionic constituents are involved, as strong
repulsion on the scale of the Fermi energy is required to observe phase separation. Super-
fluid fermionic mixtures [Shi08] and repulsive atomic Fermi gases [Val17] are examples
of intriguing phase-separation effects. In a broad sense, mixtures involving fermionic
constituents are promising candidates for realizing new phases, e.g., in Fermi-Fermi sys-
tems [Liu03a, Isk06, Par07, Bar08b, Baa10, Wan17] and in Bose-Fermi systems [Pow05,
Suz08, Mar08, Lud11, Ber13, Kin15].
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Figure 6.1: Emergence of phase separation. (a) Schematic density profiles for bosons
(magenta) and fermions (blue) for an increasing repulsive interaction. The densities
are normalized to the corresponding peak value without an interaction. Note that in
reality the boson peak density is a factor of 40 larger than the fermion peak density.
(b) Experimentally observed normalized column density of a cut through the fermionic
cloud and normalized reconstruction of the corresponding radial density profile using
the inverse Abel transformation.

In this Letter, we consider a Bose-Fermi model system that undergoes phase separa-
tion and study the interface between the constituents. We produce a Bose-Einstein
condensate (BEC) of 41K atoms in a large Fermi sea of 6Li, and we use an interspecies
Feshbach resonance for controlling the repulsive interaction. We characterize the overlap
between the species by measuring three-body recombination losses and thus probe the
thin interface between both components. By comparing the experimental results with
theoretical model calculations, we demonstrate the importance of the kinetic energy of
the condensed bosons at the thin interface.

6.3 General idea

Figure 6.1(a) illustrates the onset of phase separation with an increasing interspecies re-
pulsion, showing the density profiles of a small-sized BEC coexisting with a large Fermi
sea in a harmonic trap. The main conditions and criteria for phase separation in such
Bose-Fermi mixtures have been theoretically introduced in Refs. [Møl98, Viv00, Rot02].
For a vanishing interspecies interaction, the independent spatial profiles of the clouds
show maximum overlap [I in Fig. 6.1(a)]. With an increasing repulsion, the density of
the lithium atoms in the center of the trap decreases, the BEC is compressed, and the
spatial overlap between the clouds is reduced (II). For strong repulsive interactions, the
two clouds undergo phase separation (III), and the bosons reside at the center of the
trap, forming a hole in the Fermi sea.
We can observe the depletion in the center of the Fermi sea by imaging the 6Li cloud.
As Fig. 6.1(b) shows, we observe a small dip in the radial column density profile taken
from a thin slice of the fermion cloud. These data were taken under similar conditions



86 Probing the Interface of a PS State in a Repulsive Bose-Fermi Mixture

as our main data presented later 1. The hole in the fermion density becomes more
visible when reconstructing the fermionic radial density profile using the inverse Abel
transformation [Fig. 6.1(b)]. We see an essentially complete depletion of the fermionic
density in the center, which indicates a significant reduction of the overlap with the
BEC. A quantitative analysis of the physics at the interface is obstructed by the limited
signal-to-noise ratio of the image, the small size of the overlap region compared to our
imaging resolution, and the high optical density of the trapped cloud. Note that strong
indications of phase separation in a Bose-Fermi mixture have been observed in earlier
experiments on mixtures of 87Rb and 40K [Osp06b, Zac06], but these experiments did
not provide quantitative information on the overlap reduction.
Here, we introduce an alternative approach to study the spatial overlap between the two
species. Our observable is the boson-boson-fermion three-body recombination loss from
the trap. We assume that all losses can be attributed to three-body processes, since two-
body losses are energetically suppressed when both atomic species are in their lowest
internal substates. In our system, decay processes of three 41K atoms (three identical
bosons) occur at a very low rate, since the intraspecies scattering length abb = 60.9a0

2,
with a0 being the Bohr radius, is small compared with the interspecies scattering length
abf in the range of interest. On the other hand, recombination processes involving one
41K atom and two 6Li atoms (one boson and two identical fermions) are Pauli sup-
pressed [Esr01]. At a large interspecies scattering length, this leaves the recombination
events of two 41K atoms with one 6Li atom as the dominant three-body decay mecha-
nism.
A favorable property of our system is the fact that the BEC is much smaller than the
fermion cloud and occupies a very small volume within the Fermi sea. Thus, the BEC
can cause only a local perturbation of the Fermi sea with a negligible effect on the global
scale. This scenario enables a description in terms of a fermionic reservoir approximation
(FRA), which assumes a homogeneous environment characterized by a constant Fermi
energy EF and considerably simplifies our study of the overlap.
In the zero-temperature limit, where a pure BEC is formed, the bosonic atom loss can
be related to the overlap integral as

Ṅ = −1

2
L3

∫
nf n

2
b dV, (6.1)

where N is the total number of bosons and nb and nf represent the position-dependent
number densities of the bosons and fermions, respectively. The parameter L3 is the
three-body loss coefficient, and the symmetry factor 1/2 results from the suppression of
thermal bunching in a BEC [Kag85, Bur97, Söd99, Hal11] for a process involving two
identical bosons. The L3 coefficient can be determined as a function of abf in a standard
way [Web03b, Ulm16] using a noncondensed cloud instead of a BEC. In this case, the
interspecies repulsion can be neglected, and the density profiles of the bosons and the
fermions are well known.
In order to characterize the effect of the boson-fermion interaction on the spatial overlap

1The thin slice is taken from a typical absorption image of the Li cloud with a time of flight of 2ms
and at abf ≈ 1480a0

2Eberhard Tiemann. (private communication)
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between the BEC and the Fermi sea, we define the overlap factor

Ω ≡
∫
nf n

2
b dV∫

ñf ñ
2
b dV

(6.2)

as the three-body density integral normalized to the case of vanishing interspecies inter-
action (abf = 0), where ñf (ñb) is the fermionic (bosonic) noninteracting density.
The overlap integral for the case of a vanishing interspecies interaction,

∫
ñf ñ

2
b dV , can

be calculated analytically based on two approximations. First, we apply the FRA and
replace ñf by its peak value n̂f , which as a constant factor can be taken out of the inte-
gral. Second, for a not too small BEC, we can apply the Thomas-Fermi approximation
and solve

∫
ñ2

b dV as 4
7 Nb n̂b, with n̂b the peak density of the BEC. Finally, with the

overlap integral for the interacting case given by Eq. (6.1), the overlap factor can be
experimentally obtained as

Ω =
7

2 n̂f n̂b

γ

L3
, (6.3)

where we introduce the normalized loss rate γ = −Ṅ/N as the experimental observable
extracted from measuring the atom loss in a BEC.

6.4 Main results

For our experiments, we prepare an ultracold Bose-Fermi mixture of typically 104 K and
105 Li atoms in a cigar-shaped, crossed-beam optical dipole trap with a wavelength of
1064 nm and an aspect ratio of 1:7. The preparation procedures are similar to those
described in Ref. [Lou17] and earlier work on 6Li-40K mixtures [Spi09, Tre11, Koh12,
Jag14, Cet16]. In addition, we employ a laser cooling scheme for lithium using the D1
line [Gri13, Bur14, Fri15], which provides improved starting conditions, and we take
advantage of an alternative evaporative cooling approach [Bur14] (see also Sup.Mat. in
Sec. 6.7).
A key ingredient of our experiment is the Feshbach resonance (FR) near 335G3 [Wu11,
Lou18a] (see also Sup.Mat. 6.7), between the lowest spin states of the two species. The
scattering length can be varied by magnetic field tuning according to
abf = abg [1−∆/(B −B0)] [Chi10], where ∆ = 0.949G, abg = 60.9a0 and B0 =

335.057(1)G. The FR center B0 somewhat depends on the optical trap intensity because
of a light shift effect (see Sup.Mat. in Sec. 6.7) and can be experimentally determined
by radio-frequency spectroscopy. The other parameters are obtained from scattering
models4 (see also Sup.Mat. in Sec. 6.7).
To obtain the critical interspecies scattering length for the onset of phase separation, we
employ the FRA together with the results of Ref. [Viv00]. This yields the condition

abf > 1.15
√
abb/kF, (6.4)

3E. Tiemann and T.M. Hanna and E. Tiesinga and P.S. Julienne. (Private Communication)
4E. Tiemann and T.M. Hanna and E. Tiesinga and P.S. Julienne. (Private Communication)
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Figure 6.2: Loss measurements on noncondensed and condensed bosonic 41K clouds
in a 6Li Fermi sea. The error bars represent 1σ fit uncertainties. (a) Three-body loss
coefficient L3 for T = 440 (set A1: squares) and 240 nK (set A2: triangles). The solid
curve is an interpolation from applying a smoothing method (see Sup.Mat. in Sec. 6.7),
with the gray-shaded area representing the corresponding 95% confidence band. (b)
Normalized loss rate γ of the total atom number of a partially condensed bosonic cloud
for data sets B1-B3 (inverse triangles, diamonds, and circles, respectively).

where kF = (6π2n̂f)
1/3 is the Fermi wave number, corresponding to EF = ~2k2

F/(2mf)

with mf the mass of the fermions. For our typical experimental conditions (n̂f ≈
1.2 × 1012 cm−3), it gives a moderate value for the critical scattering length of about
600a0. This is well within our tuning range and allows us to explore the entire scenario
from weak to strong repulsion, reaching far into the phase-separated regime.
We first present our measurements of L3, which were obtained with noncondensed sam-
ples of 41K in a degenerate Fermi sea of 6Li at about 0.2TF, with TF the Fermi tem-
perature. From the measured decay curves we obtain the L3 values that are shown
in Fig. 6.2(a). The K samples are prepared close to degeneracy at two different tem-
peratures with a typical fermion peak density of n̂f ≈ 4.5 × 1012 cm−3. In one set of
measurements (set A1, see Sup.Mat. in Sec. 6.7), we have T = 440nK, corresponding
to T/Tc = 1.7 with Tc the critical temperature for condensation. In the other set (A2),
we have T = 240nK, corresponding to T/Tc ≈ 1. By applying a smoothing method (see
Sup.Mat. in Sec. 6.7), we interpolate between the data points and obtain L3 for any
abf between 80 and 2100a0. Our results on L3 show the expected strong increase with
abf , while the broad dent around 600a0 may point to an Efimov-related feature [Kra06,
Joh17].
Second, we present the boson loss rate γ in a degenerate Bose-Fermi mixture at various
interaction strengths. Typically, we have 2.9 × 104 K atoms with a 50% condensate
fraction in a Fermi sea of 1.4×105 Li atoms with a peak density of n̂f = 1.2×1012 cm−3

and a temperature of ∼ 0.13TF. The sample is first prepared at 200mG below B0, and
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then the magnetic field is changed in a near-adiabatic ramp of 2ms to the specific field
on the repulsive side of the FR, where we observe the loss of the K atoms for various
hold times. We fit the initial decay of the total atom number with a linear curve and
determine the normalized loss rate γ (see Sup.Mat. in Sec. 6.7). Figure 6.2(b) shows
the corresponding data points, which were recorded in three sets (B1-B3, see Sup.Mat.
in Sec. 6.7) with slightly varying parameters.
With the normalized loss rate γ and the three-body recombination coefficient L3, we can
now quantify the spatial overlap. In a real experiment, two complications arise that re-
quire an extension of our model beyond Eq. (6.3). First, at a finite temperature, we have
only a partial BEC and the presence of the thermal component plays a significant role
in the observed loss. Second, there is the possibility of observing secondary loss, where
a short-lived LiK dimer, produced in a first recombination, recollides with another K
atom, and therefore this leads to additional loss (see Sup.Mat. in Sec. 6.7). This process
is likely to happen for the dense BEC but negligible for the thermal K cloud. To take
both effects into account, we extend Eq. (6.1) and include all loss contributions:

Ṅ = −L3

∫
nf

(
1

2
αn2

b + αnb nt + n2
t

)
dV, (6.5)

where nt represents the thermal bosonic density and α is a factor that takes into account
secondary loss. In our case, we assume α = 3/2 (see Sup.Mat. in Sec. 6.7). The density
integral consists of three terms, which describe the loss caused by one fermion and two
bosons. The bosons can either be two atoms from the BEC, one from the BEC and one
from the noncondensed component, or two from the noncondensed bosonic cloud. Within
the FRA and the Thomas-Fermi approximation, these integrals can be calculated, and
an effective overlap factor results from an extension of Eq. (6.3) as

Ωeff =
1

n̂f

[
2
7 α n̂b β + α n̂tβ + 1√

8
n̂t(1− β)

] γ

L3
, (6.6)

where β is the BEC fraction and n̂t the peak density of a thermal Bose gas, as given
by n̂t =

[
mb ω̄

2
b/(2πkBT )

]3/2
(1− β)N , with ω̄b being the geometrically averaged trap

frequency of the bosons, mb their mass, and T = Tc(1−β)1/3 [Lou17] (see also Sup.Mat.
in Sec. 6.7).
Figure 6.3 shows the values of Ωeff that result from the data in Fig. 6.2. We qualita-
tively distinguish three regions. Below abf ≈ 250a0, the values are close to one, and
there seems to be a downward trend for Ωeff with increasing abf . Then, as abf further
increases to about 1000a0, the spatial overlap drastically decreases to a small value of
about 0.04. For larger scattering lengths, Ωeff tends to remain at this small value. Ac-
cording to Eq. (6.4), phase separation is expected to happen at ∼ 600a0 (vertical dotted
line). In contrast, we observe that beyond this point a considerable spatial overlap re-
mains, which then smoothly decreases with a further increasing scattering length. The
observed behavior does not reveal any discontinuity related to a phase transition.
To interpret the observed behavior of Ωeff , we construct a numerical mean-field model
[Hua20] (see also Sup.Mat. in Sec. 6.7) which allows us to calculate the density dis-
tributions for an interacting Bose-Fermi mixture at a zero temperature for our typical
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Figure 6.3: Effective overlap factor versus Bose-Fermi scattering length for data sets
B1-B3 (inverse triangles, diamonds, and circles, respectively). The error bars reflect
the statistical uncertainties of γ. The vertical dotted line shows the phase-separation
point as predicted by Eq. (6.4). The solid line shows the results of our full numerical
calculation (see the text) and the dashed line our results obtained within the Thomas-
Fermi approximation.

experimental parameters 5. Our model starts from the energy functional of the mix-
ture as given by Refs. [Ima06, Tra16], and we use imaginary time evolution to vary the
BEC and the fermionic densities and to minimize the energy functional. At the end,
the evolution gives the static solution of nf and nb at a zero temperature. Since we
have a partial BEC, we additionally take into account the thermal bosonic density nt

including bosonic enhancement effects (see Sup.Mat. in Sec. 6.7). With these density
distributions, we numerically calculate the overlap integrals and the effective overlap
factor Ωeff .
The results of our numerical model are represented in Fig. 6.3 by the dashed and solid
curves. For the dashed curve, the densities are obtained within the Thomas-Fermi ap-
proximation. The results indeed show a rapid decrease of Ωeff until the onset of phase
separation at about 600a0, as given by Eq. (6.4). Then, in a fully phase-separated
regime, a plateau is reached where only the thermal bosonic component can lead to
loss. Evidently, this theoretical behavior is not consistent with the experimental data
points. A notably smoother decrease of Ωeff results from our numerical model (solid
line in Fig. 6.3), when we consider the full energy functional which includes the kinetic
energy of the BEC as well as the much weaker density gradient correction from the
Fermi gas [Ima06]. Within the residual uncertainties of our method (see Sup.Mat. in
Sec. 6.7), this model reproduces the observed behavior very well.
Our results show that the kinetic energy term prevents the BEC density from changing
abruptly. This plays an essential role in smoothing the density profiles of the separated
components near the interface and, thus, in maintaining the residual spatial overlap. Ac-
cordingly, the relevant length scale that determines the thickness of the interface layer

5In our model, we consider an atom-atom mixture, neglecting any molecular component as the LiK
Feshbach molecules are short-lived and decay rapidly.
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corresponds to the BEC healing length [Dal99], which for our present conditions can
be estimated to ξ = (8π n̂b abb)−1/2 ≈ 0.50µm. This length scale can be compared
with the shortest macroscopic length scale of the system, which in our case is the radial
size of the BEC of a few micrometers. The measured overlap factor can be understood
as the volume ratio of the interface layer and the whole BEC, and the smoothing of
the phase transition can thus be interpreted as a consequence of the finite size of the
system [Bin84, Bré85].

6.5 Conclusion and Outlook

The basic idea of our method to probe the interface between spatially separated com-
ponents may be generalized to many other situations of interest. The working principle
just relies on a mechanism that selectively addresses the region where the different com-
ponents mix. While in our case three-body recombination served this purpose, one may
also apply photoassociative or radio-frequency-induced processes to stimulate loss or
state-transfer processes.
The interface between two quantum fluids is a topic of broad interest yet largely unex-
plored in quantum gases. We speculate that future studies could focus on the role of
quantum fluctuations, the two-dimensional character of the thin interface layer, and test-
ing the validity of the mean-field approach. Unwinding the microscopic nature underly-
ing the interface may give access to new phenomena such as Andreev bound states [Löf01,
Sat17], familiar in superconductor physics. Concerning the phase-separated Bose-Fermi
mixture, it would be natural to go beyond the static properties and to investigate the
dynamics of the mixture. We expect a strong impact of phase separation on collective os-
cillation modes [VS09, Mar13] and on the behavior of the system after a quench [Wil15].
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6.7 Supplemental Material

6.7.1 Preparation of the 6Li-41K mixture

In this Section, we describe the procedure applied for preparing an optically trapped
mixture of K and Li atoms in their lowest Zeeman states near 335G, where an inter-
species Feshbach resonance (FR) is located6 [Wu11, Lou18a].
Initially, the 6Li and 41K atoms are collected in a dual-species magneto-optical trap
(MOT) and loaded consecutively into a single-beam optical dipole trap (ODT) with a
wavelength of 1070 nm, power of 150W and waist of 38µm. The loading scheme of the
ODT is optimized for a large number of Li atoms, since we evaporate with a Li spin
mixture and cool K sympathetically. First, the K atoms are loaded by ramping up the
magnetic field gradient and thus compressing the K MOT, while decompressing the Li
MOT by increasing its detuning. With the K atoms transferred to the ODT, the K light
is turned off and the Li MOT is recompressed to facilitate loading into the ODT. Up to
this point, the details of the procedure are similar to those described in our earlier work
on the 6Li and 40K mixture [Spi10].
Next, we apply a gray-molasses cooling on the D1 line of lithium [Fri15, Gri13, Bur14],
to further improve the starting conditions for the evaporative cooling with Li. This gives
an increase of the phase-space density of the lithium cloud by a factor of fifteen and a
factor of five decrease in the initial temperature, while capturing the same amount of
lithium as before in the ODT [Fri15]. With these improved starting conditions, after
evaporative cooling, we reach a significant lower T/TF and higher lithium atom number.
After the D1 cooling stage, we remove the hottest atoms, by linearly ramping down the
ODT to 50% of its initial power and we create a Li spin mixture for evaporative cooling.
Nearly all the lithium atoms captured in the ODT are found in the lowest Zeeman state
Li|1〉 (F = 1/2,mF = 1/2). To obtain a 50/50 Li spin mixture in the lowest |1〉 and
second-lowest |2〉 spin state (F = 1/2,mF = −1/2), we ramp the magnetic field, turned
off during the D1 cooling stage, to 90G and apply a radio-frequency (rf) π/2-pulse. This
creates a superposition state which has enough time to decohere during the following
stages and forms a incoherent Li spin mixture.
Then we exploit a spin relaxation stage to create a polarized sample of K. The K atoms in
the ODT are a mixture of the three lowest Zeeman states. Thus, we ramp to a magnetic
field of 200G, where we previously observed the occurrence of spin relaxation [Lou17],
and wait for 500ms. We end up with an almost fully polarized 41K sample in the third-
lowest Zeeman state K|3〉 (F = 1,mF = −1) and a very small amount of K|2〉, the
second-lowest spin state (F = 1,mF = 0). After ramping to 335G we observe complete
polarization of the K sample and we speculate that the small amount of K|2〉 is lost by
recombination with lithium during the magnetic field ramps we apply to reach 335G.
We note that the presence of the K|2〉 during evaporation does not lead to any observ-
able immiscibility phenomena [Liu16], in contrast to what we observed with another
evaporation scheme in Ref. [Lou17]. After the spin relaxation stage, we further decrease
the power of the ODT linearly to 15W in 3 s. Besides the single beam ODT, the atoms
also experience a trapping force from the magnetic curvature.

6E. Tiemann and T.M. Hanna and E. Tiesinga and P.S. Julienne. (Private Communication)
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Subsequently we prepare a Li|1〉-Li|3〉 spin mixture to evaporatively cool at low mag-
netic fields [Bur14], where Li|3〉 is the third-lowest Zeeman state (F = 3/2,mF = 3/2).
After the spin relaxation stage, we ramp to 580G, where we use a rf π-pulse to transfer
all Li|2〉 atoms to Li|3〉. At this magnetic field the interaction with Li|1〉 has the same
strength for both Li|2〉 and |3〉 [Zür13]. Additionally the scattering length between Li|2〉
and |3〉 is negligible. The Li|1〉-Li|3〉 spin mixture is then used for evaporative cooling at
about 483G, where the scattering length is about −635 a0. This magnetic field is chosen
to avoid the region between 350-450G where multiple Feshbach resonances occur and
ramping over this with the Li|2〉, Li|3〉 and K|3〉 mixture leads to significant loss.
The evaporation sequence at 483G contains several stages. First, we evaporate in the
single beam ODT by exponentially ramping down its power and simultaneously load
the atoms into another single beam ODT (1064 nm, 2.4W, 44µm). Then, we continue
evaporation in this new trap and ramp up the power of a second beam (1064 nm, 0.22W,
60µm) to form a cigar-shaped (1:7) crossed-beam optical dipole trap (CDT). The two
beams intersect at an angle of 17 ◦. In a third cooling step, we further exponentially
ramp down the power of the CDT to the desired final trap depth. Depending on the
final trap depth, we end up with a condensed or non-condensed bosonic cloud in a Fermi
sea of lithium. Note that K|3〉 is sympathetically cooled along the evaporation route and
we do not observe any evaporative loss of K. The fact that the trap depth for potassium
is about twice as deep as that of lithium and the thermalization rate is high enough,
enables the sympathetic cooling.
In the final stage of the sequence, we ramp to a magnetic field slightly below 335G
avoiding inter- and intraspecies resonances. However, we first switch to a different set of
magnetic field coils, which removes the magnetic curvature and allows a high-precision
control of the magnetic field. Then we ramp to 565G, where we remove the Li|3〉 compo-
nent by a resonant light pulse. At this magnetic field the zero crossing between Li|1〉 and
Li|3〉 can be found and removing the Li|3〉 does not significantly heat up the remaining
Li|1〉 atoms. Then we transfer K|3〉 to K|2〉 with a rf π-pulse. This is followed by a series
of magnetic field ramps, where the final field of 335G is reached with a pure mixture of
Li|1〉 and K|2〉. Using a rf π-pulse we transfer K|2〉 to K|1〉 (F = 1,mF = 1) and we can
start with our measurements.
For the loss measurements we use the following sequence. At a magnetic field detuning
(δB = B − B0) of −200mG, we transfer K|2〉 to K|1〉 with a rf π-pulse of 0.056ms and
directly afterwards ramp adiabatically in 2ms to a given δB. Since we stay on the repul-
sive side of the FR, no Feshbach molecules are associated and they can only be formed
in three-body recombination processes. For various hold times at the given δB, we take
spin-specific absorption images of Li and K after respectively, 2 and 8ms time-of-flight.

6.7.2 Feshbach resonance parameters

The scattering length between the lowest Zeeman spin states of 6Li and 41K is tuned by
a FR near 335G7 [Wu11, Lou18a]. We first discuss the available theoretical predictions
(Sec. 6.7.2.1) for the background scattering length abg and the resonance width ∆.
Then, in Sec. 6.7.2.2, we show how we experimentally determine the differential magnetic

7E. Tiemann and T.M. Hanna and E. Tiesinga and P.S. Julienne. (Private Communication)
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moment δµ and the resonance position B0. In Sec. 6.7.2.3, we discuss how B0 changes
for different trap settings as a result of a light shift, and in Sec. 6.7.2.4 we discuss the
measurements which verify the theoretical value for ∆.

6.7.2.1 Theory predictions

Coupled-channel calculations by T. Hanna, E. Tiesinga and P. Julienne8 and inde-
pendently by E. Tiemann9 predict the magnetic-field dependent scattering length be-
tween Li|1〉 and K|1〉 around 335G. These calculations are based on the potentials from
Ref. [Tie09]. Two FRs show up, a broader one around 335G and a narrower one at
341G. Experimentally, the 335G FR was observed in Ref [Wu11] by detecting the loss
of K atoms. The loss maximum, corresponding to B0, was found at B=335.8G and
the width determined by a Gaussian curve fit gave a value of ∆Bexp = 1.1G. For the
FR center B0, the experimental value (335.8G [Wu11]) and the two theoretical values
(335.1G10 and 335.9G11) are only consistent within a Gauss. For a more accurate de-
termination of B0, we measure the binding energy of the dimers on the repulsive side of
the FR (see Sec. 6.7.2.2).
We find that both coupled-channel calculations agree very well on the value of the scat-
tering length if compared as a function of the magnetic detuning δB = B − B0, and
we use these calculations to extract theoretical values for abg and ∆. The predicted
scattering length can be fitted with the simple formula

abf (δB) = abg

(
1− ∆

δB
− ∆1

δB − δ1

)
, (6.7)

where abg = 60.865 a0, with a0 being the Bohr radius, and ∆ = 0.9487G is the width
of the FR at 335G. The width of the narrow FR is ∆1 = 0.0566G and the detuning of
this resonance with respect to the 335G FR center is δ1=6.1577G. The free parameters
are obtained by fitting the scattering length calculations for a detuning of −5 to +7G
and the expression is plotted in Fig. 6.4. The agreement between the calculations and
the fit is excellent, with deviations of about 1 permille. Note that because of the narrow
FR at 341G the position of the zero crossing no longer corresponds to the width of the
335G FR but instead is shifted down by 10mG.
In our analysis of the data, we neglect the influence of the FR at 341G and apply the
common formula abf = abg (1−∆/δB) to describe the scattering length. Here, we use
the values of abg = 60.865 a0 and ∆ = 0.9487G from the fit to the theoretical predictions.
The Feshbach resonance center B0 is determined experimentally. On the repulsive side
of the FR, the difference between this approach and Eq. 6.7 is very small.
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Figure 6.4: Scattering length between Li|1〉 and K|1〉 around 335G versus magnetic
field detuning as described by Eq. (6.7).
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Figure 6.5: Binding energy versus magnetic field. The binding energy is determined
either by magnetic modulation (filled diamonds) or rf (open diamonds) spectroscopy.
The solid line represents the fit of Eq. (6.12) to the data, with B0 = 335.0795(9)G and
R∗ = 2241(7) a0.
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6.7.2.2 Obtaining the Feshbach resonance center B0 by binding energy mea-
surements

To experimentally determine B0, we measure the binding energy of the Li-K dimer by
magnetic modulation (“wiggle") spectroscopy and/or radio-frequency spectroscopy [Chi10].
Fig. 6.5 shows the result of measuring the binding energy by applying both methods for
a CDT with a power of 92mW and 127mW in the two beams. Magnetic modulation
spectroscopy enables us to measure binding energies in the range of 0-2MHz, while rf
spectroscopy is typically performed up to a 100 kHz. This provides us with a wide range
of binding energies which we can measure and fit with a known binding energy formula.
The magnetic modulation spectroscopy data is obtained by modulating the magnetic
field and measuring which frequency is required to drive the transition between the free
atom state and the molecular state at a various magnetic fields. At each magnetic field
the duration and amplitude of the modulation are adjusted such that the transfer is
measurable, without driving the transition too strongly. We observe the loss of K|1〉
atoms as a function of the modulation frequency. The center between the low-frequency
onset of the loss of K atoms and the maximum loss is used as the modulation frequency
that corresponds to the binding energy. We estimate the error as half of this range. The
measurements are shown by the filled symbols in Fig. 6.5.
To measure the binding energy with rf spectroscopy we prepare a non-interacting mix-
ture of Li|1〉 and K|2〉 at several tens of mG below the expected B0 and measure the
frequency needed for a strong 800-µs rf-pulse to associate Li|1〉-K|1〉 dimers [Jag14]. Af-
ter the rf pulse, we ramp in 50µs to roughly 100mG above the resonance position. This
dissociates the created dimers into Li|1〉 and K|1〉 atoms. By plotting the atom number
in the K|1〉 state as a function of the rf frequency, we get the molecule association spec-
trum. From the spectrum we determine the lowest frequency ν, where the atom number
is at roughly 20% of its peak height. We found that for a typical maximum transfer
of 4000 K atoms, this gives a good estimate of the onset frequency for association. We
estimate the error in ν as half of the range between ν and the peak frequency, which is 2
to 5 kHz. We obtain the rf detuning ν − ν0 by subtracting the unperturbed K|2〉 →K|1〉
transition frequency ν0, which corresponds to the Zeeman splitting of the two states as
calculated from the Breit-Rabi formula. The rf detuning gives a direct measurement of
the binding energy and the results are shown by the open symbols in Fig. 6.5.
To fit the data we use the binding energy formula derived in Refs. [Pet04, Lev11] for a
weakly bound molecule near a narrow resonance. Near the dissociation treshold, Eb can
be written as

Eb =
~2κ2

2mr
, (6.8)

where mr is the reduced mass
mr =

mf mb

mf +mb
, (6.9)

8private communication
9private communication

10T.M. Hanna and E. Tiesinga and P.S. Julienne. (Private Communication)
11E. Tiemann. (Private Communication)
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Figure 6.6: Binding energy versus magnetic field for the three trap settings of the
main text. The solid lines are the fits of Eq. (6.12), with B0 as the only free parameter.
The blue circles show the rf spectroscopy measurements with the trap settings of data
set B1-B3, red triangles those of data set A2 and the black squares those of data set
A1. The error bars represent the estimated error (see text) in determining the onset
frequency.

with mf(b) the mass of Li (K). The wavenumber κ can be expressed in a second-order
Taylor expansion as

− κ = −1

a
+R∗κ2, (6.10)

where a = −abg∆/δB and the usual background scattering term is neglected. The length
parameter R∗ is related to the narrowness of the resonance [Pet04]

R∗ =
~2

2mr δµ abg∆
, (6.11)

with δµ the differential magnetic moment of the closed and open channel. All together
this gives the formula

Eb =
~2

8 (R∗)2mr

(√
1− 4R∗ δB

abg ∆
− 1

)2

. (6.12)

We fit the measured binding energies with Eq. (6.12), leaving both B0 and R∗ as free
parameters, as depicted in Fig. 6.5. For abg and ∆ the values from the fit to the
coupled-channel calculations of Sec. 6.7.2.1 are used and assumed to be free of any
relevant uncertainties. The fit results give B0 = 335.0795(9)G, R∗ = 2241(7) a0 and
thus δµ = h× 2.660(8)MHz/G.



98 Probing the Interface of a PS State in a Repulsive Bose-Fermi Mixture

0 2 4 6 8 10 12 14 16 18

335.06

335.07

335.08

335.09

335.10

335.11

335.12

 

 

B
0 (

G
)

Uopt ( K)

Figure 6.7: Feshbach resonance position as a function of the trap depth for potas-
sium. The symbols correspond to the same trap settings as in Fig. 6.6 and the additional
diamond corresponds to those of Fig. 6.5. Error bars represent fit errors in the deter-
mination of B0. The solid line represents a weighted linear fit of B0 = A+DUopt, with
A=335.057(1)G and D = 3.2(1)×10−3G/µK. The dashed line shows the extrapolation
of the linear fit to zero trap depth.

6.7.2.3 Light shift of the Feshbach resonance center B0

As already pointed out in Refs. [Koh12, Jag14, Cet16], for a similar FR in the 6Li-40K
mixture, the trap light of 1064 nm causes a differential light shift between the atom
pair state and the molecular state. This leads to a light-induced shift of the Feshbach
resonance position B0. Thus, for every trap we use, we need to measure the trap-specific
B0. We do this by performing rf spectroscopy of the Feshbach molecules. For the trap
of Sec. 6.7.2.2 we have checked that the fit to rf spectroscopy data only, with fixed
δµ, agrees with the B0 obtain from the two-parameter fit to both modulation and rf
spectroscopy data. For each trap and at various magnetic fields we thus determine the
rf detuning ν−ν0 via rf spectroscopy. This is a direct measurement of the binding energy
Eb and Fig. 6.6 shows the measurements for the three trap settings discussed in the main
text. The resulting values for B0 are given in Table 6.1 and plotted depending on the
optical trap depth Uopt for potassium in Fig. 6.7. The trap depth of the crossed dipole
trap is calculated from the power and widths of the two intersecting laser beams, under
the assumption that the beams are Gaussian. Here, we do not consider the reduction of
the trap depth by gravity. Extrapolating a linear fit to the B0 data as a function of trap
depth, shows that the Feshbach resonance center in the absence of a trap is 335.057(1)G,
where the error represents the fit uncertainty.
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Figure 6.8: Damping rate of the axial COM mode versus magnetic field detuning.
The solid line represents a fit by Eq. (6.13) with B = 3.8(2) s−1, A = 2.6(5) s−1 and
C = 0.86(5)G.

6.7.2.4 Verification of the Feshbach resonance width ∆

The width of the FR is given by the theoretical predictions to be 0.949G. We verified
this value by measuring the damping of the axial center-of-mass (COM) oscillations at
different magnetic field detunings δB for the trap settings of data set A2 (see Table 6.1).
We excite both the COM oscillations of K and Li, which oscillate at a different frequency,
but measure only the oscillations in K. The interaction between Li and K leads to friction
and this damps the COM oscillations. At the point where the interspecies scattering
length is zero, the least amount of damping is expected. Note that other types of
damping will still be present. This method, as presented in Ref. [Nai11], enables us to
determine the zero crossing of the Feshbach Resonance.
To excite the COM oscillations of the clouds (both Li and K) we use the following
scheme. At a fixed magnetic field detuning we excite a non-interacting Li|1〉-K|2〉 sample
by ramping up a strong additional trapping beam in 100ms. This beam is slightly
misaligned with one of the beams of the CDT and thus displaces the COM of the
clouds. We hold the sample in this trap configuration for 100ms and then release it in
1ms into the original trap configuration by switching off the additional beam. With a
rf π-pulse we transfer K|2〉 to K|1〉 in 56µs and obtain a mixture of Li|1〉-K|1〉. Then
we quickly ramp in 2ms to the final δB. The final detuning determines the strength of
the interaction between Li|1〉 and K|1〉. For different hold times, we observe the center
position of the K cloud and obtain the K COM oscillations. We fit these oscillations
with a damped sinusoidal curve to extract the damping rate Γ. This is repeated for
several positive values of δB around the expected zero crossing of the scattering length,
as is shown in Fig. 6.8.
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The damping rate around the zero crossing can be fitted with

Γ = B +A

(
1− C

δB

)2

(6.13)

where A,B and C are free parameters. Here, B represents the background damping,
which is not caused by the interspecies scattering length, and A is a constant which
is proportional to (abg)2. The fit gives C =0.86(5)G for the zero crossing and this is
equivalent to the width of the Feshbach resonance if no other Feshbach resonances were
close by. In our case the zero crossing is influenced by the close presence of the other
rather narrower FR at 341G and Eq. (6.7) shows that this shifts the zero crossing by
about 10mG. The width of the FR should therefore be 0.87(5)G.
From our measurements we obtain a value of 0.87(5)G for ∆, which deviates from the
theoretical value by less than 2σ. This deviation may be of statistical nature or may
be explained by an oversimplification of the model [Eq.(6.13)] we use to fit to our data.
The result can be considered to be consistent with the theoretical value for ∆, the latter
being used in our calculations and analysis. Note that using the experimental value for
∆ would not significantly affect the B0 determination, however it would give an about
10% lower scattering length abf near resonance, where abg can be neglected.

6.7.3 Measurement procedures and data analysis

In this Section, we discuss the measurements and analysis behind the data points dis-
played in the figures of the main text. We summarize the experimental parameters for
the data sets A1, A2 and B1-B3 in Sec. 6.7.3.1. The measurements and analysis of
the three-body loss coefficient L3 and the normalized loss rate γ are then described in
Sec. 6.7.3.2 and Sec. 6.7.3.3. In Sec. 6.7.3.4 we show the experimental determination of
the effective overlap factor Ωeff , and in Sec. 6.7.3.5 we explain how we take into account
secondary loss.

6.7.3.1 Experimental parameters

Table 6.1 shows the experimental parameters for the data sets A1, A2 and B1-B3. We
first show the parameters that are independent of the atom number for lithium Nf and
potassium N in the given data set and the quantities derived thereof. The errors in the
atom number represent the statistical errors due to fluctuations in the data points of
the data sets. Additionally there is a systematic calibration error of about 10% for both
Li and K. As described in Sec. 6.7.2.3, we measure B0 for each trap by rf spectroscopy.
For each trap setting we measured the radial and axial trap frequencies for the bosons
(ωrb, ω

z
b) by exciting the COM modes in axial and radial direction. The trap frequencies

for the fermions can be calculated accurately by ωif = 1.756ωib, where the factor is derived
from the ratio of the masses and the dynamical polarizabilities of the two species [Lou17].
The estimated effective trap depth Ub(Uf) for the bosons (fermions) in the z-direction is
also shown. This trap depth is calculated from the power and waist of the CDT beams
under the assumption that the beams are Gaussian and we took into account the effect



Probing the Interface of a PS State in a Repulsive Bose-Fermi Mixture 101

of gravity, which lowers the trap depth. For a non-condensed K cloud (data set A1,
A2), the temperature is determined from the time-of-flight expansion of the K atoms.
For the BEC cloud (B1-B3 data sets), the temperature is derived from the measured
BEC fraction β [Lou17]. When comparing the temperature with the trap depth of the
bosons, we can see that the potassium atoms are trapped in a deep trap and loss can
only happen due to recombination with lithium.
The peak density of lithium n̂f and the Fermi temperature TF are derived from the atom
number by the textbook equation (for T = 0)

n̂f =

(
2
kB TFmf

~2

)3/2 1

6π2
=

2
√
Nf√

3π2

( ω̄f mf

~

)3/2

, (6.14)

where kB is the Boltzmann constant and ~ is the Planck constant. The geometrical aver-
age of the trap frequency as seen by lithium, ω̄f , can be calculated as ω̄f = (ωrf ω

r
f ω

z
f )1/3.

When we compare TF to the effective trap depth Uf , we see that the final trap settings
are deep enough for lithium. We also give the relative temperature T/TF, which shows
that we are indeed very cold and justifies the use of Eq. (6.14), which is valid for T=0.
The BEC fraction is obtained from a bimodal fit to the absorption images after time-of-
flight and we quote the average BEC fraction and its standard error for the given data
sets. The peak density of the BEC n̂b and the thermal peak density n̂t are given by

n̂b =
152/5

8π

(
ω̄bmb

~√abb

)6/5

(β N)2/5,

n̂t =

(
ω̄2

bmb

2π kB T

)3/2

(1− β)N,

(6.15)

where abb = 60.9 a0
12, and we assume the thermal density to follow the Boltzmann

distribution. When calculating the critical temperature Tc we correct for finite-size and
interaction effects [Gio96], which leads to a down shift of the critical temperature of less
then 10%, when compared to the common expression kB Tc = 0.940 ~ ω̄bN

1/3.

6.7.3.2 Measurements of the three-body loss coefficient L3

For the two data sets (A1, A2) with non-condensed K atoms, we measure the loss of K
atoms for various hold times t at different repulsive Bose-Fermi scattering lengths abf in
order to determine L3. The atom loss can be quantified as

Ṅ = −L3

∫
nf n

2
t dV = −L3 n̂f

n̂t√
8
N. (6.16)

Within the fermionic reservoir approximation (FRA), we can assume that the fermion
density as seen by the potassium atoms is constant and replace ñf by the peak density
n̂f at zero temperature and take it out of the integral. The remaining integral is solved,
assuming that the thermal density of the bosons follows the Boltzmann distribution.
The measured evolution of the atom number follows an effective two-body loss equation

12Eberhard Tiemann. (private communication)
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Table 6.1: Summary of the data sets and their experimental parameters.
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with Ṅ ∝ −N2 and we fit the data with

N(t) = N0 (1 +N0C t)
−1 , (6.17)

where the free parameters N0 and C represent the initial atom number and the constant
we extract. An example curve is displayed in Fig. 6.9(a) for abf ≈ 850 a0. The L3

coefficient is then calculated as

L3 = C

√
8

n̂f ω̄
3
b

(
2π kB T

mb

)3/2

. (6.18)
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The error in L3 is propagated from the fit error in C. Additionally, there is about a
12% systematic error in the conversion from C to L3, coming from the Li and K atom
number calibration, the temperature, and the trap frequency determination.
There are two additional corrections to Eq. (6.18), both taken into account for the data
points displayed in Fig. 2(a) of the main text. First of all, for temperatures close to
the critical temperature for condensation, the bosonic system deviates from the clas-
sical Boltzmann distribution and Eq. (6.18) overestimates the value of L3. The Bose
enhancement of the density gives a correction factor to Eq. (6.18) of 0.97 for set A1 and
0.78 for set A2.
Second, for abf below 150 a0, the three-boson loss becomes significant. This adds a
second term to the equation for the atom loss

Ṅ = −L3n̂f

∫
n2

t dV −K3

∫
n3

t dV. (6.19)

We use this equation instead of Eq. (6.16) to correct for the influence of the additional
loss term. Measurement of K3 in the trap of A1, with a pure bosonic sample and
T = 536(20)nK, gives a rate constant of K3 = 0.012(3)× 10−25 cm6/s. Here, we fitted
the atom loss data with the solution to the differential equation Ṅ/N3 = −A, with A the
free parameter. Solving the integral for the three-boson loss, K3 can then be extracted
as

K3 =
A
√

27(
mb

2π kB T

)3
ω̄6

b

(6.20)

This leads to a 4-12% correction of L3 for the three points with the lowest abf . For the
other L3 data the effect of the three-boson loss compared to the boson-boson-fermion
three-body recombination loss is two orders of magnitude smaller.
The value of L3 for any abf between 80 and 2100 a0 is approximated by applying the
LOESS smoothing method [NIS18] to the data. LOESS is a locally weighted polynomial
least squares regression method, based on the idea that any function can be well approx-
imated in a small local region by a low-order polynomial. More weight is given to the
data points close to the local region than to those farther away. The great advantage
of this method is the fact that it does not require a specific model to fit the data. We
use a LOESS smoothing with a degree of 2 and q = 0.5 to fit the data of L3, using the
fitting program R [Ven17] and calculate the 2σ confidence interval of the smoothing as
displayed in Fig. 2(a) of the main text. The degree of 2 means that we locally fit with
a simple parabola. The smoothness parameter q determines how much of the data is
being used for each local fit. The typical 1σ uncertainity in the smoothed data is about
10%.

6.7.3.3 Measurements of the normalized loss rate γ

We observe the loss of the atom number of a partial BEC for various hold times and
for different values of the scattering length. A typical loss measurement is shown in
Fig. 6.9(b) for abf ≈ 850 a0. To fit the data, we approximate the initial loss as a
linear decay given by Ṅ/N = −C. In practice this means that we fit the data with
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Figure 6.9: Decay curves of a thermal (a) and partial BEC (b) cloud of 41K for abf of
about 850 a0. The red curves are the fitting curves used in the analysis and the vertical
dashed line in (b) shows the cut-off criterion for the linear fit. The error bars represent
the statistical uncertainties corresponding to the fit errors of the atom number obtained
from the absorption images.

N(t) = N0 − C t, where N0 and C are free parameters. We limit the fit to 30% of
the initial atom number. Fig. 6.9(b) shows a typical fit and the cut-off criterion. We
obtain the normalized loss rate as γ = C/(0.85N0). The thus obtained values of γ are
displayed in Fig. 2(b) of the main text, where the error represents the fit error in C.
Three data sets (B1-B3) are taken in this way and Table 6.1 shows their parameters,
where N = 0.85N0. During the time in which the K atom number decreases by 30%,
we observe that the BEC fraction only changes within 10% and heating due to the loss
of K atoms does not lead to a substantial change in β. We assume this is because of
sympathetic evaporation of lithium [Mos01].
Additional three-boson loss mostly affects the two data points taken below 150 a0. For
the other points the measured loss rate is an order of magnitude higher then the measured
decay of a K partial BEC without lithium. We measured the decay of a pure K sample
with a 39(4)% BEC fraction and NK = 2.7(2) × 104 and we found a normalized loss
rate of the total atom number of γ3b = 0.01(1)/s. We correct for this additional form
of loss by subtracting γ3b from the measured γ. This significantly affects only the two
points below 150 a0 in Fig. 2(b) of the main text and the uncertainity in the measured
three-boson decay is reflected in the error bar for γ. Moreover, these two data points
show a very slow decay and therefore we fit their loss curves only up to 3 s instead of
30% of the initial atom number.
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6.7.3.4 Experimental determination of the effective overlap factor Ωeff

As an extension of Eq. (2) in the main text, we define the effective overlap factor Ωeff

for a partial BEC as

Ωeff ≡
∫ (

1
2αnf n

2
b + αnf nb nt + nf n

2
t

)
dV∫ (

1
2α ñf ñ

2
b + α ñf ñb ñt + ñf ñ

2
t

)
dV

, (6.21)

which is the total three-body density integral including all loss contributions normal-
ized to the corresponding non-interacting (abf = 0) integral. It takes into account the
additional loss because of the thermal bosonic density and the effect of secondary loss
through the factor α (see Sec. 6.7.3.5).
With this definition, the atom loss equation [Eq. (5) in the main text] can be rewritten

Ṅ = −L3 Ωeff

∫
ñf

(
1

2
α ñ2

b + α ñb ñt + ñ2
t

)
dV = −L3 Ωeff I0, (6.22)

where we have introduced I0 as the overlap integral for the non-interacting mixture. This
integral can be simplified by replacing ñf with the peak density n̂f at zero temperature
and taking n̂f out of the integral, as justified by the FRA. The three integrals left to
solve are then ∫

ñ2
bdV =

4

7
n̂bβN, (6.23)∫

ñbñtdV = n̂tβN, (6.24)∫
ñ2

t dV =
1√
8
n̂t(1− β)N. (6.25)

Here we treat the BEC within the Thomas-Fermi approximation and we use the Boltz-
mann distribution to describe the thermal bosonic density. For solving the second in-
tegral we assume that the BEC samples the peak density of the thermal cloud. With
these three solutions, I0 becomes

I0 = n̂f

(
2

7
α n̂b β N + α n̂t β N +

1√
8
n̂t (1− β)N

)
. (6.26)

We finally arrive at the central equation for our data analysis [Eq. (6) in the main
text], which allows us to calculate Ωeff from the measured values of γ and L3 and the
experimental parameters,

Ωeff =
1

n̂f

(
2
7α n̂b β + α n̂t β + 1√

8
n̂t (1− β)

) γ

L3
. (6.27)

For the atom number of lithium and potassium, and the BEC fraction we take the
average value in the time frame set by the cut-off criterion of 30% K atom loss. The
average values of the peak densities, atom numbers and the BEC fraction for each data
set are listed in Table 6.1.
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6.7.3.5 Secondary loss

In our definition of Ωeff in Eq. (6.6) we implemented a factor α, which gives an estimate
on the importance of secondary loss. When α = 1, there is no secondary loss and a
three-body loss event leads to the loss of two K atoms and one Li atom. However, in a
dense sample it may happen that further atoms are lost by collisions with the products
of a previous recombination [Sch01b, Zac09].
A possible scenario for secondary loss is the following. In a first collision event of two
bosons (b) and one fermion (f), a weakly bound dimer (bf*) is formed according to
b + b + f → bf∗ + b + Eb. In this recombination event the binding energy (Eb) of the
dimer is released and distributed almost evenly into the motion of the K atom and Li-K
dimer, where the K atom takes 47/88 and the dimer 41/88. The K atom and the Li-K
dimer may quickly escape from the trap if their obtained kinetic energy is higher than the
trap depth. The Li-K dimer can recollide with another K atom as bf∗+b→ bf+b+Ekin,
whereby the dimer relaxes to a energetically lower internal state (bf) and releases the
energy Ekin. Since Ekin is very large as compared to the trap depth, all products will
be lost immediately. This inelastic atom-dimer decay is more likely to take place when
the K sample is dense enough such that the Li-K dimer can find a collision partner in a
reasonable amount of time.
Important in the discussion of secondary loss is also the comparison between the binding
energy of the formed dimer and the trap depth. If there is not enough energy released
for the dimer to leave the trap, there will be enough time for it to recollide with the
other K atoms in the trap. The effective trap depth for K for the data sets B1-B3 is
0.856µK, where the effect of gravity is taken into account. Thus, for scattering lengths
below about 1500 a0 (almost our entire measurement range), the recombination products
will obtain enough energy to escape the trap. For higher scattering lengths, we expect
the collisional products to remain trapped and the released energy will be redistributed
among the other atoms in the trap, leading to additional heating and loss.
A typical rate constant for inelastic atom-dimer decay is βAD ≈ 1.4×10−10cm3/s [Jag16].
Together with the peak density or our BEC of 5× 1013cm−3, this gives a time scale for
inelastic collisions of τ ≈ (βAD n̂)−1 ≈ 140µs, which is about one order of magnitude
shorter than the oscillation period of the particles in the trap. After the three-body
recombination event the dimer has an estimated kinetic energy of ∼ 5µK, which gives
a typical velocity for the dimer of vAD = 42mm/s and thus it can travel a distance of
∼ 6µm before undergoing an inelastic collision event. Given the size of the BEC (see
Fig. 6.11) there is a high probability that the dimer encounters a K atom from the BEC
before leaving the trap, and undergoes a transition to a deeply bound molecular level
with a large release of kinetic energy. For the thermal potassium density, the time scale
for the inelastic collision is more than an order of magnitude higher and it is therefore
less likely that the Li-K dimer will recollide with a thermal K atom. Thus, the secondary
collisions mostly happens with K atoms from the BEC and we add the factor alpha only
to the overlap integrals in Eq. (6.6) which contains the BEC density.
Since the inelastic rate coefficient is not exactly known, the influence of secondary loss
on Ωeff cannot be a priori calculated, but we rather rely on estimates. We know that
the factor α should be at least 1 (two K atoms lost per recombination event) and it
is reasonable to assume that α does not exceed 3/2 (one additional K atom lost). In
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Figure 6.10: Effective overlap factor as a function of the Bose-Fermi scattering length
for (a) α = 3/2 (Fig. 3 in the main text) and (b) α = 1.

Fig. 6.10 we show a plot of Ωeff versus abf for α = 3/2 (same as in Fig. 3 of the main
text) in comparison with the corresponding result for α = 1. Note that α has also been
adjusted for the theory curves. As is clearly visible, the plot with α = 3/2 gives a better
agreement between the data and the calculations. This indicates that the presence of
secondary loss processes is very likely.
Additionally K atoms can be lost because of a boson-boson secondary collision. The
typical mean free path for the identical bosons is ` ≈ (8π a2

bb n)−1 and this gives for our
typical peak densities a mean free path of about 78µm (BEC) and 1.4mm (thermal).
Thus, it is reasonable to assume that the K atom does not recollide and we can rule out
that elastic collisions between the condensate atoms lead to an avalanche effect [Sch01b].

6.7.4 Theoretical model and numerical solution

In this Section, we start with a zero temperature mean-field model for the boson-fermion
mixture, and then extend it by introducing a thermal cloud to include finite temperature
effects of the bosons. Finally, we calculate the effective overlap factor Ωeff from the
density of the different components.

6.7.4.1 Zero-temperature approach

In order to study quantitatively our observations on the overlap factor Ωeff, we construct
a numerical mean-field model to calculate the density distributions of the BEC (nb) and
the fermions (nf) for an interacting Bose-Fermi mixture at zero temperature. Our model
starts from the energy functional of the mixture as [Ima06, Tra16]

E =

∫
d3r

[
~2

2mb
(∇
√
nb)2 + Ubnb +

1

2
gbbn

2
b

+
1

9

~2

2mf
(∇
√
nf)

2 + Ufnf +
~2

2mf

3

5
(6π2)2/3n

5/3
f

+ gbfnb nf

]
,

(6.28)
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Figure 6.11: Number density profiles of the different components of the Bose-Fermi
mixture at various values of the boson-fermion scattering length, i.e. abf is 0 a0 for the
curves in solid black, 300 a0 for dashed red, and 600 a0 for dotted green. Panel (a) and
(b) show the radial and the axial density of the BEC. Panel (c) and (d) show the fermion
densities and (e) and (f) the thermal boson densities. Note that different density scales
are used for the three components. The densities are calculated by considering all terms
in Eq. (6.28).

.

where Ub(~r) and Uf(~r) are the bosonic and fermionic harmonic trapping potentials,
and gbb = 4π~2abb/mb and gbf = 2π~2abf/mr are the boson-boson and boson-fermion
coupling constants.
To obtain the densities within the Thomas-Fermi approximation, the term (∇√nb)2,
which arises from the kinetic energy of the BEC, is ignored. Additionally the (∇√nf)

2

term of the fermions is ignored as well. This term is the leading term for the density-
gradient correction [Kir57], which is much smaller than the other terms under our typical
experimental conditions.
To solve Eq. (6.28) numerically, we set up a numerical grid of 1024×1024 points in real
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space for nb and nf as our system has cylindrical symmetry. Then for each value of
abf we minimize this energy functional by varying the densities with imaginary time
evolution (also known as the steepest descent method [Ima06]), which is constrained
by a fixed total atom number for each species (Nb and Nf) and finally gives the static
solution for nb and nf .
Our typical experimental system has a total boson number of N = 2.9 × 104, a BEC
fraction of β = 50% and consequently Nb = 1.45 × 104, and a total fermion number of
Nf = 1.4× 105 (see sets B1-B2 in Table 6.1). Our elongated optical dipole trap has an
aspect ratio of 7.3 and the radial trap frequency is 171.1 Hz for the bosons and 300.3

Hz for the fermions. The scattering length for the bosons is abb = 60.9 a0
13. With

these parameters, we obtain the zero-T densities and the results of the full calculation,
including both ∇ terms, are plotted in the upper four panels of Fig. 6.11. Panel (a) and
(b) show nb in the radial and the axial direction, and panel (c) and (d) show nf. Different
colors correspond to different values of abf (black for 0 a0, red for 300 a0 and green for
600 a0). Note that the effect of the kinetic energy terms, which tends to smooth out the
density distributions especially when nb is near zero, is more visible in the radial plots
(panels (a) and (c)) because of the different scales (aspect ratio) between the radial and
axial direction.

6.7.4.2 BEC at a finite temperature: Thermal boson cloud

Because of the finite temperature of the experiment, we only obtain a partial BEC and
we have to take the non-degenerate component (∼ 50% of N) into account. Thus we
calculate the thermal boson density nt, which is about two orders of magnitude smaller
than nb. It gives a small extra overlap between the bosons and fermions. In the main
text and as outlined in Sec. 6.7.3.4, we approximate the thermal boson density nt with
a Boltzmann distribution and we obtain an analytical formula for the overlap integrals.
For the theoretical model, we include boson statistics, which enhances the boson den-
sity in the trap center, as well as the mean-field interaction between the BEC and the
thermal cloud, and we calculate nt and the corresponding overlap integrals numerically.
We assume nt to be the density of a trapped saturated thermal Bose gas influenced by
the mean-field potential formed by the BEC. Other mean-field effects, e.g. the inter-
action between fermions and thermal bosons and the influence of the thermal gas on
the BEC, are considered to be weaker and ignored. Finally, different from the Boltz-
mann distribution, the thermal boson density for the numerical model is given by the
polylogarithm function g as

nt = λ−3g3/2

(
e
−µ−Ut
kBT

)
, (6.29)

where the thermal de Broglie wavelength is λ =
√

2π~2/(mkBT ), the total potential
for thermal bosons is Ut = Uopt + 2gbbnb, the chemical potential µ for bosons is taken
to be the minimum of Ut(r, z) so that the thermal gas is saturated in phase space, and
T is the temperature which is obtained as a normalization factor for the total thermal

13Eberhard Tiemann. (private communication)
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boson number, i.e. Nt =
∫
nt(T ) d3r. Using the zero-T densities of the BEC and the

fermions, obtained in the previous Section, we calculate the thermal bosonic density
with Eq. (6.29) and we get the radial and axial density profiles displayed in panel (e)
and (f) of Fig. 6.11.
It is interesting to note that the bosonic enhancement effect in the thermal cloud sub-
stantially increases the peak density by a factory of ∼ 2.4. However, the repulsion by
the BEC has the opposite effect, and for the overlap with the Fermi gas, both effects
approximately cancel each other. Therefore, we find that the approximation used for
the thermal gas in our analysis and the derivation of Eq. (6.27) turns out to be a good
one.

6.7.4.3 Effective overlap factor Ωeff

With the numerically calculated densities the effective overlap factor Ωeff at finite tem-
perature can be calculated by numerically solving the overlap integrals in the interacting
and non-interacting cases and using Eq. (6.6), where α = 3/2 (see Sec. 6.7.3.5). The
results are plotted in Fig. 3 of the main text (here Fig. 6.10a). In Fig 6.10b, the results
for α = 1 are shown.
We emphasize that this numerical model does not use the Boltzmann distribution
for thermal bosons, and it does not rely on the peak density approximations used in
Sec. 6.7.3.5, and it includes effects beyond the Thomas-Fermi limit. The value of the
denominator in Eq. (6.6) from the analytical model is only about 9% higher than the
numerical result in the non-interacting case and the remaining difference mostly comes
from the TF approximation in the analytical model [Eq. (6.27)]. This agreement indi-
cates the validity of the analytical model for the thermal bosons and Ωeff.

6.7.5 Systematic errors in theory and experiment

As Fig. 3 of the main text shows, the measured overlap is slightly higher than the
calculated values and there can be several reasons for this discrepancy. In this Section,
we discuss the possible systematic effects we have in the theoretical calculations as well
as in the experimental procedures and data analysis .

6.7.5.1 The fermion density: Finite temperature effects and the FRA

In our analysis of the experimental data we use the FRA and the peak density at zero
temperature. Both assumptions lead to a systematic error. When using the FRA, we
assume the bosons to sample a fixed local fermion density. This assumption leads to an
underestimation of the overlap between the fermions and the thermal bosons by about
two percent. However, for the overlap with the BEC atoms the deviation from the FRA
is negligible because of their small spatial extend.
Furthermore, we assume that the fixed fermion density as sampled by the bosons is given
by the fermion peak density at zero temperature (See Eq. (6.18) and Eq. (6.18)). How-
ever, finite temperature effects and the gravitational sag on the bosonic cloud challenge
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this assumption. For the L3 measurements, ignoring the finite temperature leads to an
underestimation of L3 of about 20% for the highest temperatures (data set A1). For the
peak density used in Eq. (6.27), the finite-T effect is about 7% percent.
The gravitational sag on the bosonic cloud leads to a shift of the center of the cloud
by about 8µm, which, as can be seen in Fig. 6.11, leads to the bosons sampling a 20%
lower fermion density than the peak density. Thus, using the lithium peak density in
Eq. (6.27) leads to an underestimation of Ωeff by 20%. The effect for the L3 measure-
ments is less drastic because of the spatial extend of the thermal cloud.
For the final values of Ωeff the effects of finite-temperature on the L3 measurements and
the gravitational sag on the lithium peak density in Eq. (6.27) cancel each other out.
We estimate that when taking all the above mentioned corrections into account, we have
an underestimation of Ωeff by about 5%.

6.7.5.2 Systematic errors in the effective overlap factor Ωeff

In Fig. 3 of the main text (see Fig. 6.10a), the uncertainty in the Ωeff data points
reflects the statistical uncertainties of γ. Additionally, there are systematic errors in
determining Ωeff via Eq. (6.27), which come from the determination of the atom number,
BEC fraction, temperature and trap frequencies. The systematic calibration error in the
determination of the Li and K atom number is about 8%, and we estimate the BEC
fraction determination from the bimodal fit to have a 10% error. The systematic error
in γ is thereforw11% and for the fermion and BEC peak density it is about 10%. The
thermal peak density is estimated to have an error of 17%. The systematic error in L3 is
about 15% and has two main sources. First, the typical 1σ uncertainty in the smoothing
of L3 is about 10% and second there is a systematic error in all L3 data points of about
12% which comes from the uncertainty in the atom numbers, temperature and trap
frequencies. All together this leads to a systematic uncertainty in Ωeff of about 26%.

6.7.5.3 Other processes

When we prepare the samples, we assume that we ramp adiabatically to the final field,
since we did not observe any noticeable excitation. However an unnoticeable yet weak
excitation of the mixture can lead to additional overlap and losses. This would both
affect the γ and L3 measurements, and thus only have a weak influence on Ωeff .
Moreover, we speculate that recombination in a degenerate sample may not be exclu-
sively attributed to three-body recombination. Higher-order processes such as four-body
rebombination may contribute. If at all important, such processes may be present at the
high phase-space densitities of a BEC, but they will be suppressed for thermal clouds.
Such processes would lead to increased values for Ωeff .
The high density of the boson cloud may lead to another effect causing a spatial sepa-
ration between the two species, as observed in Ref. [Bau11]. If the mean free path of a
Li atom in the dense cloud of K is much smaller than the spatial extend of the boson
cloud, then the motion is diffusive and it takes a long time for a Li atom to reach the
center of the K cloud. If three-body processes happen at a shorter time scale than this
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diffusive motion, the result will be an effective reduction of the spatial overlap of both
species. The mean free path for a Li atom moving in a thermal cloud of K is about
20µm (abf ≈ 600 a0), so for our L3 measurements, the motion of the Li atom stays
essentially ballistic and the effect described in Ref. [Bau11] can be safely neglected. In
the case of the K-BEC, the mean free path of the Li atom is an order of magnitude lower
and the collision time is on the order of 20µs. Comparing this to the typical time for
three-body loss τ = 2(L3 n

2)−1 ≈ 1.5ms, shows that also for our γ measurements the
effect observed in Ref. [Bau11] cannot play a significant role.
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7.1 Abstract

We investigate the fundamental breathing mode of a small-sized elongated Bose-Einstein
condensate coupled to a large Fermi sea, which consists of fully spin-polarized atoms
in the collisionless regime. Our observations show a dramatic shift of the breathing
frequency when the mixture undergoes phase separation at strong interspecies repulsion.
We find that the maximum frequency shift in the full phase-separation limit depends
essentially on the atom number ratio of the components. We interpret the experimental
observations by modelling the complex dynamics of the collisionless fermions within two
complementary approaches. One model assumes an adiabatic response of the Fermi
sea, while the other one considers single fermion trajectories for a fully phase-separated
mixture. Our models capture the observed features over the full range of interest.

7.2 Introduction

Mixtures of quantum fluids play a fascinating role in our understanding of multi-component
many-body quantum systems. For decades, the study of such mixtures focused on the
phases of the helium isotopes 3He and 4He and their properties in mixed states, under
phase-separated conditions, or at the interface between two phases [Ebn71]. Ultracold
atomic gases have opened up many new opportunities, and various weakly and strongly
interacting Bose-Bose, Fermi-Fermi and Bose-Fermi mixtures have been investigated
[Pit16, Pet02]. A unique feature of ultracold quantum gases is the possibility to tune
the interparticle interactions over a wide range by magnetically controlled Feshbach res-
onances (FRs) [Chi10].
Right from the early experiments on harmonically trapped quantum gases [Jin96, Mew96],
collective modes have served as powerful probes for interparticle interactions. Depend-
ing on their particular character [Pit03], collective modes can be sensitive to different
effects. If the trapped sample changes its position, angle, or form without undergoing
significant volume changes, the mode can be classified as a surface mode. Excitations
of this kind have been used to study the transition from hydrodynamic to collisionless
behavior in both bosonic [Sta98, Bug05] and fermionic [Alt07b, Wri07] quantum gases.
If, in contrast, the oscillation involves significant changes of the volume and thus of the
density of the sample, then the mode can be classified as a compression or breathing
mode. Modes with predominant compression character can serve as sensitive probes
for the equation of state. As an example, the radial breathing mode in an elongated
trap [Str96, Che02] has served as a tool to probe strongly interacting Fermi gases [Kin04,
Bar04b, Alt07a].
In ultracold atomic mixtures, the motional coupling generally leads to rich behavior in
the collective modes, see e.g. Refs. [Bus97, Esr98, Ho98, Bij00, Yip01, Cap01, Pu02,
Liu03b, Rod04] for early theoretical considerations. As a basic example, the center-of-
mass (COM) oscillations of different components (their so-called dipole modes), which
can experience frequency shifts and damping [Vic99, Mad00, Gen01], have been uti-
lized in recent experiments to study coupling effects in mixed superfluids [Fer14, Del15,
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Figure 7.1: Radial breathing mode of a small BEC (red) residing in a large Fermi sea
(blue). The atomic quantum-gas mixture is kept in a highly elongated optical trap.

Roy17, Wu18]. The dipole modes have also been used to investigate mediated interac-
tions [DeS19] of a BEC interacting with a Fermi sea, where the collisionless fermions
have no order parameter. In general, excitations in mixtures involving collisionless mo-
tion become rather complex.
In the case of strong interspecies interactions, instabilities (collapse [Mod02, Osp06a] or
phase separation [Zac06, Osp06b, Pap08, Shi08, Val17, Lou18b]) render the collective
dynamics even more complex. Although the understanding of collective behavior near
instabilities is essential in view of proposed fermionic superfluids based on mediated
pairing [Bij00, Hei00, Efr02, Suz08, Ens09, Car17, Kin18b], corresponding experimental
information is rather scarce.

7.3 Experimental procedure and results

In this Rapid Communication, we consider the fundamental breathing mode of a Bose-
Einstein condensate (BEC) repulsively coupled to a large fermionic reservoir of atoms.
Our system, realized with optically trapped 41K bosons and 6Li fermions (see Fig. 7.1),
offers tunable interspecies interaction and allows us to explore the regime of strong re-
pulsion, where the BEC phase separates from the surrounding fermions [Lou18b]. As a
dynamic phenomenon resulting from phase separation, we demonstrate the emergence of
a drastic up-shift of the BEC’s breathing mode frequency. We show how this effect de-
pends on the interaction strength and on the atom number ratio of bosons and fermions.
We interpret the complex dynamical many-body physics of our system in terms of two
complementary models, which capture the observed features over the full range of inter-
est.
The frequency shift can be understood qualitatively by considering the interface that
emerges from phase separation of the Bose-Fermi mixture. In the presence of the in-
terface, the BEC becomes hydrostatically compressed by the Fermi pressure. Exciting
a collective mode of the BEC leads to a motion of this interface. If the mode is a
breathing mode, the oscillation inflates and deflates the interface, like modulating a
bubble in the Fermi sea. Intuitively, the volume change of the BEC leads to a signifi-
cant reversible work against the Fermi pressure. Because of the existence of this strong
restoring mechanism the oscillation frequency substantially increases. This stands in
contrast to surface modes of BECs immersed in Fermi gases, which have been observed
in experiments [Fer14, Del15, Roy17, DeS19, Wu18]. There, the frequency shifts are
rather small, since surface modes do not change the volume and thus do no work against
the Fermi pressure.
The transition into the phase-separated regime is characterized by two distinct values
of the interspecies scattering length abf . We define a depletion scattering length ad as
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the value at which the fermion density drops to zero in the center of the trap, where
one finds the highest boson density. The value of ad is trap specific and depends on
the densities of the components, so we obtain it numerically [Lou18b]. We also define a
critical scattering length

ac =

√
15π

4
rm

√
abb
kF

(7.1)

as the value where the mixture fully phase separates in the Thomas-Fermi limit [Viv00].
Here rm = 2

√
mbmf/(mb + mf ), mb and mf are the boson and the fermion masses

respectively, kF =
√

2mfEF /~2 is the Fermi wave number, and abb is the boson-boson
scattering length. We note that, under the realistic experimental conditions of a system
of finite size, the phase transition is smoothed by the kinetic energy of the BEC [Lou18b].
Our 41K-6Li mixture is produced via laser and evaporative cooling following a procedure
described in Ref. [Lou18b] and kept in an elongated optical dipole trap, which is formed
by two crossed infrared laser beams and has an aspect ratio of 7.61. The radial trap
frequency is ωb = 2π × 171 Hz for K and ωf = 2π × 300 Hz for Li. Typically, we have a
sample of 105 Li atoms in the lowest spin state Li|1〉 (F = 1/2, mF = 1/2) and 4× 104

K atoms prepared in the second-to-lowest spin state K|2〉 (F = 1, mF = 0). The mix-
ture is thermalized at a temperature of T/TF ≈ 0.13, where TF ≈ 700 nK is the Fermi
temperature of the Li cloud. With a condensate fraction of about 1/3, the K BEC has
an atom number of ∼ 2× 104.
We vary the interspecies interaction strength by a combination of spin-state manipula-
tion and Feshbach tuning. First, we control the particular spin state of the K atoms
by application of radio-frequency (rf) π-pulses. In the case of the Zeeman sublevel K|1〉
(F = 1, mF = 1), a Feshbach resonance near 335G facilitates tuning of the interspecies
scattering length according to abf = abg[1 − ∆/(B − B0)], where abg = 60.9a0 (a0 is
Bohr’s radius), ∆ = 0.949 G and B0 = 335.057(1) G2. In the case of K|2〉, only the weak
background interaction is present (abf ≈ 60a0), which provides enough thermalization
for sympathetic cooling between the two species, but is too weak to induce significant
changes to the density profiles [Lou18b]. The boson-boson scattering length stays con-
stant as abb = 60.9a0

3.
To excite the breathing mode of the K condensate we modulate the interspecies inter-
action by periodically changing the scattering length [Mat98, Pol10] . As illustrated
in Fig. 7.2, this is achieved by alternating the state of the K atoms between K|2〉
(abf ≈ 60a0) and K|1〉 (abf ≈ 700a0) using a short burst of rf-pulses at B − B0=−100

mG. The π-pulse duration is 100 µs, which is much shorter than the pulse spacing of
1.4 ms. The latter is roughly matched to half the period of the radial breathing mode
(full period τ ≈ π/ωb) in order to resonantly drive the oscillation. Starting in K|2〉, a
burst of three rf pulses enables us to excite the fundamental breathing mode of the K|1〉
condensate (which is mostly radial) with a ±25% modulation of the radial size, accom-
panied by a much slower oscillation in the axial size (see Sup. Mat. in Sec.7.5). The

1The two trapping laser beams have a wavelength of 1064 nm and are crossed at an angle of 16
degrees. The waist of the lasers are 44 and 60µm, respectively.

2The light-induced shift of the Feshbach resonance center B0 has been taken into account. For our
typical experimental conditions, it is about ten mG. See the Supplemental Material in Ref. [Lou18b] for
details.

3The values for abb and abg are accidentally the same within three digits.
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Figure 7.2: Excitation procedure for the breathing oscillation of the BEC with a series
of interaction quenches. The magnetic field is first set to a value where abf ≈ 700a0 in
the K|1〉-Li|1〉 mixture, but we start in the K|2〉-Li|1〉 mixture, where the interaction
is weak (abf ≈ 60a0). Then we apply several radio-frequency π-pulses where the time
between consecutive flips is τ/2, which corresponds to half of the radial breathing mode
period of the BEC in the absence of fermions. After this multiple-pulse excitation we
ramp the B-field to the target value and let the oscillation continue there.

duration of the burst affects the oscillation amplitude but has no noticeable influence
on the measured breathing mode frequency ω. Within our detection limits, we do not
observe oscillations in the thermal cloud of K atoms or in the Li cloud.
Immediately after the excitation stage, the B-field is ramped within 1 ms to the target
value of abf . We hold the excited mixture for a variable time and then we switch off
the trap and take time-of-flight images of the expanding atomic clouds. To obtain the
frequency ω of the breathing mode, we fit the recorded time evolution of the width of
the BEC with a damped harmonic oscillation with a slowly varying background, the
latter being caused by the small residual excitation of the axial mode (see Sup. Mat. in
Sec.7.5). Typically we record about six breathing mode periods for each measurement,
as a longer hold time can only marginally improve the precision of the measurement
(see Sup. Mat. in Sec.7.5). Moreover, we can safely ignore the influence of atom number
decay on ω within this short period, since the recombination loss from the BEC is below
20% at most of the values of abf and still smaller than 50% for the few points taken very
close to the FR center (abf > 2000a0).
In order to normalize ω we measure corresponding value ω0 in the limit of small abf .
This is accomplished by adding an additional π-pulse to the above excitation sequence
to prepares a K|2〉 BEC, which provides a good approximation of the non-interaction
case. We verified the expected relation to the trap frequency ω0 = 2ωb for the radial
breathing mode of an elongated BEC [Str96, Che02] within a 1σ uncertainty of 2%.
In Fig. 7.3(a) we present our measurements of ω/ω0 as a function of the dimensionless
interaction parameter ac/abf with ac according to Eq. (7.1). The first set of measure-
ments (filled black circles) was taken with the boson number Nb = 1.6 × 104 and the
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Figure 7.3: BEC breathing mode frequency ω and damping rate γ as a function of the
dimensionless interaction parameter ac/abf . The two sets of measurements (filled black
circles and red squares) correspond to different atom number ratios (see text). Both
observables are normalized to ω0. The vertical dotted lines indicate the corresponding
ad/abf . The theoretical results from the AFS and FPS model are plotted as dashed
and solid curves with corresponding color for the two sets of measurements. The error
bars indicate the 1σ fitting uncertainty.

fermion number Nf = 1.0× 105 (Nb/Nf = 0.16), for which we calculate the two charac-
teristic values of the scattering length as ac = 619a0 and ad = 308a0 (ac/ad = 2.0). For
increasing repulsive strength, i.e. decreasing ac/abf , we first observe a slow increase of
ω/ω0 until ac/abf ≈ 2 is reached. Here the fermion cloud becomes fully depleted in the
center of the BEC [Lou18b]. Then, in the intermediate range of ac/abf between 2 and
1, ω/ω0 rapidly rises until a plateau value of about 1.2 is reached. For even stronger
repulsion in the phase-separated regime, no further frequency change is observed. These
results show that the frequency up-shift emerges exactly where the transition to the
phase-separated regime occurs and finally levels off at the plateau value when full phase
separation is reached.
We conducted a second set of measurements with a different atom number ratio (Nb =

8.0× 103, Nf = 1.7× 105 and thus Nb/Nf = 0.05, see Sup. Mat. in Sec.7.5), for which
ac = 595a0 and ad = 400a0 (ac/ad = 1.5). The corresponding results (set 2) are pre-
sented as filled red squares in Fig. 7.3. In comparison with set 1, the breathing mode
frequency in set 2 starts to increase at a slightly smaller value of ac/abf . But the in-
crease of ω/ω0 is steeper, and a higher plateau value around 1.3 is reached. This is
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Figure 7.4: Breathing mode frequency in the phase-separation limit as a function of
Nb/Nf . The blue triangles show the measurements performed at a fixed abf = 1330a0
(ac/abf ≈ 0.45). The error bars show the 1σ fitting error. The black circle and the
red square show the frequency shift at abf ≈ 1330a0 as extracted from sets 1 and 2
in Fig. 7.3. The numerical curves from the AFS (dashed) and FPS (solid) model are
calculated for a total atom number of 1.5× 105 (see Sup. Mat. in Sec.7.5).

qualitatively expected since a smaller value of Nb/Nf corresponds to a more strongly
compressed BEC and thus a larger frequency change.
For completeness we also show the normalized damping rate γ/ω0 as a function of the
interaction parameter ac/abf in Fig. 7.3(b). In the region of ac/abf > 1 we observe a
nearly constant value of γ/ω0 ≈ 0.02, and we attribute this weak damping to the an-
harmonicity of the crossed optical dipole trap and the interaction between the BEC and
the non-condensate bosons [Jin96].4 In the phase-separated regime where ac/abf < 1,
the damping rate shows a trend towards higher values with larger uncertainties, which
may be due to a residual excitation of higher-order radial modes.
Motivated by the observed different plateau values of ω/ω0 in the phase-separated
regime, we further study the role of the number ratio Nb/Nf . We carried out a se-
ries of measurements at a fixed scattering length of abf = 1330a0 (ac/abf ≈ 0.45)5. As
shown in Fig. 7.4, the largest frequency shift observed amounts to about 40% for the
smallest Nb/Nf , and it decreases to ∼10% when Nb/Nf increases from 0.03 to 0.19 (see
Sup. Mat. in Sec.7.5).
A theoretical description of the many-body dynamics of our Bose-Fermi system turns out
to be rather challenging, because of the kinetics of the Fermi sea being essentially deter-
mined by the collisionless motion of the trapped fermions. The most simple model that
captures the elementary features is an adiabatic Fermi sea (AFS) model, which assumes

4The observed damping rate γ/ω0 of the BEC breathing mode remains near 0.02 in the absence of
the fermions. We attribute this to the properties of the trap and the bosons.

5The ratio ac/abf varies between 0.43 and 0.47, because of small changes in ac with variations of EF
(see Sup. Mat. in Sec.7.5)
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that the whole Fermi sea adapts adiabatically to the time-dependent mean-field formed
by the BEC. This can be justified if at any position the local Fermi velocity is much larger
than the speed of sound of the BEC [Yip01, Hua20]. In addition we take advantage of the
fermionic reservoir approximation [Lou18b], which assumes a constant global chemical
potential for the fermions. This leads to a time-dependent Gross-Pitaevskii equation for
the BEC with a mean-field term from the fermions calculated in a quasi-stationary way.
We solve the resulting differential equation numerically (see Sup. Mat. in Sec.7.5) and
show the results for the BEC breathing mode frequency by the dashed lines in Figs. 7.3
and 7.4 for ac/abf > 0.4. For stronger repulsion strengths (ac/abf < 0.4), the extremely
thin interface leads to numerical instabilities and challenges the basic assumption of an
adiabatic fermion response.
Regarding the dependence on the strength of the repulsive effect (Fig. 7.3), the AFS
model predictions agree with the measured points if the Fermi sea is not completely
depleted in the trap center (abf < ad). Beyond that, in the intermediate regime
(ad . abf . ac) the model reproduces the emergence of a strong frequency up-shift,
and it finally also shows the tendency of leveling-off in the limit of full phase separation
(FPS), where ac/abf → 0. Qualitative agreement is also found in the dependence of the
up-shift value on the number ratio (the dashed curve in Fig. 7.4) in the FPS regime.
Quantitatively, however, the frequency change calculated at ac/abf ≈ 0.45 is about 1.5
times larger than observed experimentally.
For the case of full phase separation, we develop another approach, named the FPS
model, to calculate the frequency shift [VS09, Hua20] (see also Sup. Mat. in Sec.7.5).
Instead of assuming a quasi-static behavior of the Fermi sea, the FPS model describes
the full dynamic response of a trapped Fermi sea. Intuitively, it embodies the trajec-
tories of individual fermions, which repeatedly bounce off the interface and fall back
to it at time intervals up to half of the fermion oscillation period π/ωf . Based on the
collisionless Boltzmann transport equation, we calculate the dynamic response of the
Fermi pressure at the oscillating Bose-Fermi interface. Then the frequency is obtained
by matching the pressure and the radial speed at the interface. We find that the FPS
model (solid curves in Fig. 7.3 and 7.4) gives a frequency shift very similar to the AFS
results in the regime of full phase separation for all Nb/Nf values that we have stud-
ied. Therefore we conclude that the dynamic character of the response does not provide
an explaination for the deviation from the experiment [Hua20] (see also Sup. Mat. in
Sec.7.5).
A possible reason for the deviation may be due to the excitation scheme, which involves
rapid switching of the interaction and thus creates additional fermion excitations [Nas09],
which remain unresolved in the oscillation signal (see Sup. Mat. in Sec.7.5) and contami-
nate our signal. Another reason may be a finite-temperature effect. The thermal bosonic
component overlaps with the fermions and, at large interspecies scattering lengths, this
forms a hydrodynamic shell around the BEC, which may affect the whole oscillation
spectrum. Further investigations will be necessary to fully account for all mechanisms
contributing to the large breathing mode frequency shift. Essentially, we encounter the
situation where a superfluid is interacting with another quantum fluid without long-
range order. The collective and single-particle excitations of the two components are
coupled to each other, and hence the excitation spectrum of the mixture becomes more
intricate than that of mixtures of two superfluids.
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In general terms, our work shows how a small-sized BEC serves as a probe in a quantum
fluid and provides information on both the interaction regime and the local properties of
the environment. The latter can be described in terms of a decomposition into moments,
which couple differently to various collective modes. The local pressure couples to the
monopole (breathing) mode, the pressure gradient to dipole modes, and more complex
anisotropies to higher-order modes. In our specific situation, the dominant effect results
from the Fermi pressure acting on the breathing mode, whereas many scenarios can
be envisioned where higher moments will strongly affect the collective mode spectrum.
This can be the case in inhomogeneous systems, in more complex trapping potentials,
in anisotropic environments realized in dipolar quantum fluids [Bar08a, Lah09, Bur16,
Kad16, Tra18], or in spin-orbit coupled systems [Gal13, Zha15].
Bose-Fermi mixtures with tunable interactions represent promising systems for the re-
alization of novel fermionic superfluids based on boson-mediated pairing effects [Bij00,
Hei00, Efr02, Suz08, Ens09, Car17, Kin18b], for both strongly attractive and repulsive
interspecies interactions. The current experimental possibilities are enhanced by the in-
creasing number of mixtures available in the laboratory; see e.g. Refs. [Tra18, Rav18] for
recent examples. In all candidate systems for boson-mediated fermion pairing, an issue
of crucial importance is the competition between the formation of pairing phases and the
onset of instabilities. Our current studies unveil the elementary dynamics in a strongly
repulsive Bose-Fermi mixture and point to more general ways to extract information
from the collective dynamics in regimes of particular interest.
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7.5 Supplemental Material

7.5.1 Analysis of the oscillation data

Here, we explain the fitting procedure for our data by which we extract the results
presented in the main text. We obtain the data by taking absorption pictures of the
partial BECs. We fit the images with a bimodal distribution (assuming a simple Thomas-
Fermi distribution for the BEC) and extract the width of the condensed part of the
atomic cloud in both the radial and the axial (z) direction. By varying the time after
the excitation (see Fig. 2 in the main text), we typically record six oscillation periods
of the radial width. In Fig. 7.5(a) we show an extended time evolution of the radial
width R, which shows the dynamics on a longer time scale. We observe an oscillation
at a frequency ω, which corresponds to the radial breathing mode of the BEC. Its
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Figure 7.5: Long-term time evolution of the BEC size R in the radial and the axial
directions at abf = 362a0 (ac/abf ≈ 1.66) and Nb/Nf = 0.18. The error bars show the
1σ error of the bimodal fit. Panel (a) shows the fast radial mode on the background of
a slow oscillation induced by the axial mode and panel (b) the slow axial mode. The
results of the fits are presented as solid red curves.

frequency is twice the trap frequency of the bosons. In addition to that, we notice a
slow background oscillation. This corresponds to an axial mode, which is known as the
quadrupole mode for BECs in elongated traps [Mew96]. The excitation of this mode is
visible in the time evolution of the axial width Rz depicted in Fig. 7.5(b). It takes place
on a much longer time scale than the radial breathing mode, because of the large aspect
ratio (7.6) in our elongated trap.
We obtain the radial breathing mode frequency, by fitting R(t) by a damped harmonic
oscillation with a slowly oscillating background,

R(t) = R0 +Ae−γt sin(ωt− φ) +Aze
−γzt sin(ωzt− φz), (7.2)

where the free parameters of interest are the frequency ω and the damping rate γ.
Other free parameters of this fitting function are the offset R0, the amplitudes A and
Az and the phases φ and φz. We determine the axial frequency ωz and damping rate γz
independently by fitting a damped sinusoidal function to the time evolution of the axial
width Rz, as depicted in Fig. 7.5(b). For most of the data presented in the main text
we record about six breathing mode periods. This means that each set of oscillations
only shows a part of a period of the axial mode. Therefore the obtained values of ω and
γ are largely insensitive to the exact values of the axial parameters ωz and γz. For this
reason we take only one data set for the axial mode and then fix ωz and γz in Eq. (7.2)
for the analysis of all measurements of the radial breathing mode.

7.5.2 theoretical models

Here we briefly summarize the two models, the adiabatic Fermi sea (AFS) and full
phase-separation (FPS), which we used in the main text to describe our experimental
observations. Both models approximate the elongated mixture as a cylindrical system,
where the density distribution in radial direction over the whole z-axis (axial direc-
tion) corresponds to the radial density at the center of the original system. Detailed
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studies on these models as well as another numerical model applying the test-particle
method [Bra97] for fermions will be discussed separately [Hua20].

7.5.2.1 Adiabatic Fermi sea (AFS) model

For each given set of parameters, e.g. {abf , Nb, Nf}, we obtain the equilibrium state
of the Bose-Fermi mixture via a numerical procedure as described in Ref. [Lou18b].
Then we approximate our elongated mixture with a cylindrical system, of which the
radial density profiles take the numerical values in the plane at the trap center (z = 0).
Particularly, the order parameter of the BEC at equilibrium is given by the BEC density
as ψ0 =

√
nb0. In order to simulate the oscillations, we start with a perturbed order

parameter ψ = ψ0 + δψ, e.g. the ψ0 for a slightly different abf . Then we let ψ evolve in
time following

i~
∂ψ

∂t
= − ~2

2mb
∇2ψ + gbbψ

∗ψ2 + (Ub + gbfnf )ψ, (7.3)

where gbb = 4π~2abb/mb and gbf = 2π~2abf (mb + mf )/mbmf are coupling constants,
and Ub is the external trapping potential for bosons. The fermion density is

nf = C(µf − Uf − gbfnb)3/2H(µf − Uf − gbfnb), (7.4)

where C = (2mf/~2)3/2/2π2, µf is the global chemical potential of fermions, Uf the
trapping potential for fermions, nb = ψ∗ψ the BEC density, and H the Heaviside step
function. Furthermore we apply the fermionic reservoir approximation [Lou18b], which
assumes a constant global chemical potential µf .
The weighted averaged width of the cylindrical BEC, R =

∫
r2nb(r)dr/

∫
rnb(r)dr, is

recorded as a function of time up to the typical duration of observations and fitted with
a cosine function to extract the oscillation frequency ω for the current set of parameters.

7.5.2.2 Full phase separation (FPS) model

At the limit of large abf when the full phase separation occurs, we first study the dynam-
ics of the two components separately within the Thomas-Fermi approximation. Then
the frequency of the collective mode is determined by matching the boundary condi-
tions, i.e. velocity and pressure, at the interface. Following a procedure introduced in
Ref. [VS09] for a spherical case, we investigate the oscillation for a cylindrical mix-
ture, which is more relevant to our experiment. We note that the currently ignored
finite kinetic energy of the BEC at the interface can be included as a surface tension
effect [VS08]. However, to adhere to a simple and transparent picture here, we neglect
the contribution off the surface tension term, which involves several further assumptions
and tends to give a slightly higher frequency shift.
In the cylindrical case, the perturbation of the BEC density is described by

δnb(r) ∝ F

1 +
√

1 + 2ω2/ω2
b

2
,
1−

√
1 + 2ω2/ω2

b

2
, 1,

r2

R2

 , (7.5)



124 Breathing mode of a BEC repulsively interacting with a fermionic reservoir

where F is the hypergeometric function 2F1, ω the frequency of the collective mode,
ωb the trapping frequency of bosons, and R the Thomas-Fermi radius of the BEC. For
a phase-separated mixture in a harmonic trap, the value of R is determined by the
chemical potential µb of the compressed BEC via µb = mbω

2
bR

2/2.
The ansatz describing the deformation of the Fermi surface in a cylindrical system is
f = f0 + δ(|p| − pf )u(r, α, β)e−iωt, where α = cosφ as φ is the angle between the
momentum p and the position r in the radial plane, β = cos θ as θ is the angle between
p and the z-axis (axial direction), and pf (r) =

√
2mf [µf − Uf (r)] is the local Fermi

momentum. Then the fermion perturbation has a solution as

u(r, α, β) = F1[L2]F2[v2
z ]e
−iωτ/2 (7.6)

where

L2 = ω2
fr

2(R2
f − r2)(1− α2)(1− β2), (7.7)

v2
z = ω2

f (R2
f − r2)β2, (7.8)

F1[x] and F2[x] are arbitrary differentiable functions of x, the angular momentum L and
velocity vz in the axial (z) direction are constants of motion. Rf is the Thomas-Fermi
radius. The single fermion trajectory period τ is

τ(r, α, β) =
ψ0 − arctan[2α/g(r, β)]

ωf
, (7.9)

where ψ0 = πH[g(r, β)], g(r, β) =
√

(1− β2)(R2
f − r2)/r − r/

√
(1− β2)(R2

f − r2) and
the domain of α and β is [0, 1]. For other values of α and β, we have τ(r,−α, β) =

−τ(r, α, β) and τ(r, α,−β) = τ(r, α, β). In an intuitive picture, fermions repeatedly
bounce off (α > 0) the Bose-Fermi interface and fall back (with α′ = −α) to it, because
of the trapping potential, at a time interval of τ .
We obtain the collective motion frequency ω by matching the boundary conditions at
the interface r = ζ. In the first place, the pressures of the BEC and the fermions should
be equal when the surface tension is ignored [VS08]. The pressure of the excited Fermi
sea is given by the momentum flux Π(r) = (1/mfh

3)
∫
d3pα2(1 − β2)p2f(p, r) in the

radial direction. Moreover, assuming a perfect phase-separation without exchange of
particles, the radial speeds of the two components are equal at the interface. We now
arrive at the equation for ω as

∂rF

F
=

ω2mbnb
p4
fCΠ

(2π~)3 − ∂r(Pb − Pf )
, (7.10)

where CΠ = 8ω
∫ π/2

0 dφ
∫ 1

0 dβ(1− β2)3/2 cos3 φ cot (ωτ/2). Finally we apply the param-
eters at the interface into Eq. (7.10) and solve it to get ω.
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7.5.3 role of the atom number ratio

Here we clarify the dependence of ω in the full phase-separation regime on the atom
number ratio Nf/Nb, as this dependence is shown in Fig. 4 of the main text. In view
of our theoretical models, the dependence can be understood by considering the FPS
model and apply further approximations to Eq. (7.10). First we ignore the fluctuation
of the Fermi momentum flux, i.e. the term with CΠ, and arrive at an AFS model in
the Thomas-Fermi limit. Secondly, we assume ζ � Rf and drop ∂rPf . Finally, we
consider the limit of Nf/Nb � 1, where the BEC is tightly squeezed (ζ � R) and nb
becomes a constant. In this condition, Eq. (7.10) reduces to ω2/ω2

b = (r∂F/∂r)/F ,
the pressure balance condition requires R4 ∝ R5

f , and the atom number conservation
corresponds to Nb ∝ R2ζ3 and Nf ∝ R6

f . By solving the simplified equation, we find

ω/ωb ∝ (Nb/N
25/24
f )1/3 ∼ (Nb/Nf )1/3. Consequently, it is valid to approximate ω/ωb

(and ω/ω0 in the main text) as a function of Nb/Nf .
In the numerical calculations, we use a total atom number of 1.0× 105 and change the
atom number ratio Nf/Nb to study the corresponding variation of ω. To justify that any
change of the total atom number has only minor influences on our results, we test the
dependence of ω on the total atom number. We verify that if we increase the total atom
number by a factor of two while keeping Nf/Nb constant, the breathing mode frequency
increases by less than 1% (4%) in the FPS (AFS) model.
In the experiment we change the atom number ratio by varying the duration of loading
atoms into the magneto-optical trap. In our system we consecutivly load Li and K.
While loading the latter, the Li atom number decays. Therefore to increase the atom
number ratio Nb/Nf we increase the K loading time, which increases Nb and reduces
Nf . We tune Nb from 6.6 × 103 to 2.3 × 104 while the corresponding Nf is between
2.2× 105 and 1.0× 105.

7.5.4 other modes and the attractive side of the Feshbach resonance

We briefly report some further observations in our system. First we look into the radial
breathing mode frequency at negative abf values. Our measurements on the attractive
side of the Feshbach resonance are limited to |abf | . 600. For very stronge attractive
interactions the oscillations are not well-defined, because the mixture is close to the
regime where the BEC undergoes collapse [Osp06a, Zac06] and rapidly decays. In this
complex regime we see a small upshift in frequency, which reaches a maximum value of
6(2)%.
Secondly, we measure the frequency of the radial dipole mode at positive scattering
lengths. We excite this oscillation by shortly switching on an additional trapping beam,
which is slightly displaced and parallel to the beam that provides the radial confinement
in the crossed optical dipole trap. This displaces the center of mass of the cloud. By
switching off this excitation beam we release the sample into the original trap and record
the oscillation. Our observations show that there is no interaction-induced shift on the
level of 0.5%.
It would be interesting to study also frequency shifts in the low-lying axial modes, i.e. the
axial dipole and the quadrupole mode. Due to their surface character these shifts are
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expected to be small. For the slow axial mode that we clearly observe in both panels in
Fig. 7.5, the oscillations are of opposite phase. This points to the fact that the mode,
as expected [Mew96], is mainly a quadrupole mode and thus has predominant surface
character. However, two reasons hinder the observation of the frequency shifts in our
system. As mentioned before, the timescale of the axial modes is much longer than that
of the radial modes. Consequently in the interesting regime, where the interaction is
strong and frequency shifts may occur, the fast decay of the atom number leads to large
errors in the frequency measurements and prevents us from resolving a frequency shift
there. A large uncertainty in these measurments results from the excitation scheme in
our experiment. In the time evolution of the axial dipole mode, for example, we observe
various hints for higher-order excitations. For these reasons we can only state within an
uncertainty of 8% that we do not see a frequency shift for these modes.
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8.1 Abstract

We investigate the properties of a strongly interacting imbalanced mixture of bosonic
41K impurities immersed in a Fermi sea of ultracold 6Li atoms. This enables us to explore
the Fermi polaron scenario for large impurity concentrations including the case where
they form a Bose-Einstein condensate. The system is characterized by means of radio-
frequency injection spectroscopy and interspecies interactions are widely tunable by
means of a well-characterized Feshbach resonance. We find that the energy of the Fermi
polarons formed in the thermal fraction of the impurity cloud remains rather insensitive
to the impurity concentration, even as we approach equal densities for both species. The
apparent insensitivity to high concentration is consistent with a theoretical prediction,
based on Landau’s quasiparticle theory, of a weak effective interaction between the
polarons. The condensed fraction of the bosonic 41K gas is much denser than its thermal
component, which leads to a break-down of the Fermi polaron description. Instead,
we observe a new branch in the radio-frequency spectrum with a small energy shift,
which is consistent with the presence of Bose polarons formed by 6Li fermions inside the
41K condensate. A closer investigation of the behavior of the condensate by means of
Rabi oscillation measurements support this observation, indicating that we have realized
Fermi and Bose polarons, two fundamentally different quasiparticles, in one cloud.

8.2 Introduction

Quantum many-body systems may greatly vary in the nature of their elementary partic-
ipants and in energy scales, descending from nuclear and quark-gluon plasmas, electrons
in condensed matter, down to liquid helium and ultracold gases. Nonetheless, the the-
oretical approaches used to tackle them are remarkably similar [Lan33, Str18, Wöl18,
Bow73, Mas14]. One of the most important tools developed to deal with the many-body
problem, and to simplify it drastically, is Landau’s celebrated idea of quasiparticles
[Lan33]. It turns out that the low energy excitations of a large class of many-body sys-
tems can be described in terms of particle-like entities denoted quasiparticles. This leads
to a relatively simple yet powerful description of interacting many-body systems, and as
a consequence the quasiparticle framework is an indispensable tool in our understanding
of nature [Bay91]. Indeed, while exotic new materials such as unconventional supercon-
ductors [Nor11] or singular Fermi liquids [Var02] may defy this quasiparticle description,
Landau’s framework has in general been spectacularly successful in describing a wide
range of systems in nature.

Multi-component ultracold gases offer an excellent test bed to investigate quantum
many-body systems [Blo08]. In particular, strongly imbalanced quantum mixtures rep-
resent an ideal system to study the limits of Landau’s quasiparticle paradigm. In these
systems, the minority component represents impurities interacting with the surrounding
majority component to form quasiparticles. Since early experiments in 2009 [Sch09,
Nas09], the case of dilute impurities in a large Fermi sea realizing quasiparticles coined
Fermi polarons has been intensively studied in many experiments [Koh12, Cet15, Cet16,
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Sca17, DO19, Nes20, Adl20]. Thanks to the flexibility provided by ultracold atom ex-
periments, also the complementary case of Bose polarons, i.e. quasiparticles formed by
embedding mobile impurities in a bosonic environment, has been investigated [Hu16,
Jør16, PA19, Yan20a, Sko21].

In the single impurity limit, the quantum statistics of the minority species, i.e. whether
it is a fermion or a boson, is irrelevant for the behavior of the ensemble. Theoretical pre-
dictions based on Landau’s approach have shown excellent agreement with experimental
observations in this regime [Che10, Mas14, Lev15a, Sch18]. Even for moderate impurity
concentration, a description in terms of quasiparticles has proved accurate. However,
as the concentration is further increased, the quantum statistics of the impurities will
determine the fate of the polaron. In Fermi-Fermi systems the impurities first form a
Fermi sea of polarons [Sca17], and finally the whole system undergoes a transition to
a paired superfluid as the concentration is increased beyond a critical value for attrac-
tive interactions [Pit16, Kin18a]. In contrast, bosonic impurities at large concentration
and low temperature will form a Bose-Einstein condensate (BEC), as we have shown
in previous work [Lou17, Lou18b, Hua19]. Employing resonantly tunable interactions,
a strongly interacting Fermi-Bose mixture, embedded in the Fermi sea, can then be
created. Furthermore, an intrinsic property of quasiparticles such as polarons is that
they interact via density modulations in the surrounding medium [Bay91]. Such in-
duced interactions between bosonic impurities will in general be attractive, in contrast
to fermionic impurities [Mor10, Yu10, Yu12, Cam18a], and may lead to the formation
of bound dimer states [Cam18b].

In this Article, we present our experimental observations regarding polaron physics in
Fermi-Bose mixtures, where the bosons (41K atoms) represent the minority species im-
mersed in a sea of ultracold fermions (6Li atoms). We explore different density regimes
and show that both the Fermi and the Bose polaron can be realized in our system. In
Sec. 8.3 we discuss the basic properties of the impurities as a function of their concen-
tration, and the differences with respect to the previously investigated Fermi-Fermi case
of 40K impurities in a 6Li gas [Koh12, Cet15, Cet16]. After this we introduce our ex-
perimental procedures and the relevant parameters in Sec. 8.4. Then our experimental
results are presented and discussed in Sec. 8.5 before we conclude in Sec. 8.6.

8.3 Bosonic Impurities in a fermionic environment

In this Section, we discuss our basic approach of immersing bosonic potassium atoms,
41K, as a minority component into a Fermi sea of ultracold lithium atoms, 6Li, in the
presence of strong interspecies interactions. We introduce the three different density
regimes accessible in our system. Then we compare the current experimental approach
with our previous work, in which we investigated a system where the impurity was
represented by the fermionic isotope 40K [Koh12, Cet15, Cet16].
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Figure 8.1: Illustration of the Fermi-Bose mixture in three different impurity density
regimes. The upper (lower) row shows the non-interacting (interacting) impurities,
immersed in a Fermi sea, which is represented by the blue background. The interaction
between the impurities and the Fermi sea gives rise to density modulations as illustrated
by the light blue circular rings around the K atoms. A radio-frequency (RF) pulse brings
the system from a non-interacting to a strongly interacting state. The three columns
illustrate three different regimes. From left to right we increase the bosonic density
from a single impurity, to high densities, and finally to a mixed phase containing a
large BEC component.

8.3.1 From a single impurity to a BEC

Our main motivation is to investigate density-dependent effects of Fermi polarons emerg-
ing from bosonic impurities. The three different regimes of impurity densities in our
Fermi-Bose (FB) mixture are illustrated in Fig. 8.1. The blue background and the red
dots represent the Li Fermi sea and the K impurities, respectively. As in our previous
work on the Fermi-Fermi (FF) system [Koh12], we use radio-frequency (RF) injection
spectroscopy to transfer atoms from a non-interacting spin state K|2〉 into a state K|1〉
that interacts with the fermionic medium.

In the case of a single impurity (left column), the K atom is dressed by particle-hole
excitations of the Fermi sea, which lead to local density modulations in the medium and
to the formation of the Fermi polaron. In this low concentration regime, the quantum
statistics of the impurity does not matter. The situation is accurately described in
terms of a variational ansatz [Che06], which has been widely applied in the field [Mas12,
Mas14, Par16, Sch18].

As we add more K atoms, we expect to introduce polaron-polaron interactions into
our system, as depicted in the middle column of Fig. 8.1. In this density regime, the
spatial overlap of the density modulations around the impurities will result in an effective
interaction between the quasiparticles mediated by the fermions, which is attractive due
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to the bosonic nature of the 41K atoms [Mor10, Yu10, Yu12, Cam18a, San08, Hu18,
Cam18b, Taj18, DeS19, Edr20], see also Appendix 8.9. This effective interaction plays
a key role in Landau’s quasiparticle theory, but experimental observations in quantum-
degenerate gases are still scarce [Cet16].

In the high-density regime (right column), the impurities form a BEC in the center of
the trap. As we shall see, the density of this BEC exceeds that of the fermionic density
by a large factor of ∼ 36. In this case, the two species interchange their roles and,
locally, the Li atoms can be considered as impurities in the K-BEC. Such a scenario is
commonly described in terms of Bose polarons [Hu16, Jør16]. Therefore, as we vary the
K density from a thermal cloud to a BEC, we can realize the transition from a system
of Fermi polarons to a system of Bose polarons.

8.3.2 Comparison with previous experiments

Here we discuss the basic situation investigated in our present work in comparison with
our previous experiments. The main difference is the change in the quantum statistics of
the impurity species, i.e. bosonic 41K atoms instead of fermionic 40K atoms. The Fermi
sea of 6Li stays essentially the same, only with minor changes of the particular exper-
imental parameters. This similarity enables us to focus on the effects of the quantum
statistics of the impurity.
The tunability of the interspecies interaction strength in our experiment is given by a
Feshbach resonance (FR) [Chi10] between the lowest Zeeman sublevels of K and Li. The
parameters characterizing the FR are very similar in the FB and FF case, see App. 8.8
and Supp. Mat. of Ref. [Cet16]. A quantitative difference is the Fermi energy, which
in the present case is somewhat lower and therefore modifies the influence of the finite
effective range on the interspecies interaction. This fact is taken into account in our
theoretical approach, which is presented in detail in App. 8.9.
Another difference between the two systems, which is connected with the FR, is the
choice of spin states we work with. In the FF system, we tune the interactions be-
tween the lowest and the third-to-lowest spin state of Li and K, respectively. Therefore,
dipolar relaxation [Nai11] can lead to decay into lower lying Zeeman sublevels, which is
relevant, in particular, if molecules are formed [Jag16]. In the FB case, the interacting
atoms occupy the lowest spin channel, which suppresses the two-body process of dipolar
relaxation.

When considering few-body processes [Nai17, Gre17a], we find that the quantum statis-
tics of the impurities plays a crucial role. In contrast to the FF system, inelastic few-body
scattering processes are not suppressed by Pauli blocking in the present case. There-
fore, three-body processes involving one fermion (Li) and two bosons (K) can lead to
strong resonant losses [Häf17, Joh17]. Other few-body processes, like, e.g., atom-dimer
resonances [Jag14], sensitively depend on the quantum statistics.

As we increase the K density and generate a BEC, which is only possible if the impuri-
ties are bosonic, the character of the whole system changes qualitatively. As described
in our previous publications [Lou18b, Hua19, Hua20], already for moderate repulsive
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interspecies interactions we enter the regime of phase separation. Here the BEC sep-
arates from the Fermi gas and behaves as an almost pure BEC. On the other hand,
for moderate attractive interactions the BEC is supposed to undergo collapse [Osp06a,
Zac06].
Owing to the fact that the Li-K mixture offers very similar interaction tunability for
40K and 41K, it provides an excellent test bed for investigating the differences between
strongly interacting FF and FB systems.

8.4 Experimental procedures

In this Section, we outline the experimental procedures for preparing a mixture of ul-
tracold 6Li and 41K atoms in the vicinity of an interspecies FR. After describing the
preparation of our sample (8.4.1), we introduce experimental parameters relevant for
the data analysis (8.4.2) and our method of tuning the interspecies interaction (8.4.3).
Finally we explain the RF excitation scheme (8.4.4).

8.4.1 Sample preparation and detection

We use an all-optical approach [Spi10] to prepare our system in a crossed-beam optical
dipole trap (CODT), operated with 1064-nm light. Following the evaporation and spin
preparation scheme described in detail in the Supplemental Material of Refs. [Lou18b,
Lou18a], we obtain a mixture of lithium atoms in the lowest hyperfine spin state Li|1〉
(F = 1/2,mF = 1/2) and potassium atoms in the second to lowest hyperfine spin state
K|2〉 (F = 1,mF = 0) in thermal equilibrium.

At the end of each experimental cycle we switch off the optical dipole trap, let the atoms
expand for an adjustable time and detect them using state-selective absorption imaging.
This allows us to image the atoms in two spin states per species for each experimental
cycle. Details on the imaging technique and on how to obtain the atom number are
provided in the Supplemental Material of Ref. [Cet15].

We conduct our measurements in two different regimes, in which we either prepare a
thermal cloud (THC) or a partially condensed cloud (PBEC) of K atoms immersed in
a degenerate Fermi sea of Li atoms. We keep the same trap setting for both regimes in
order to avoid complications arising from different trap depths and different light shifts of
the center of the Feshbach resonance. We achieve this by altering the preparation stage
for the PBEC with respect to the THC in two ways. First, we increase the initially
loaded atom numbers and second we apply an additional evaporation step where we
further ramp down the power of our CODT and slowly (within 1s) recompress it to
the initial values in the end. With this procedure, we ensure a two-fold increase in the
number of K atoms and thus an increase of the critical temperature for condensation by
about 30%. The condensed fraction is typically of the order of β ≈ 0.5.
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The finally prepared system consists of roughly 105 Li|1〉 and 104 K|2〉 atoms 1 with
temperatures of T ≈ 100 nK at a magnetic field of B ≈ 335G, where the only relevant
effect of the weak interaction is the thermalization of the sample with an interspecies
scattering length of about ∼ 60 a0

2, a0 being the Bohr radius. The atoms are trapped
in a CODT with radial trap frequencies ωrad,K = 2π×227 s−1 and ωrad,Li = 2π×382 s−1,
as well as axial frequencies ωax,K = 2π × 31 s−1 and ωax,Li = 2π × 49.5 s−1 for K and Li,
respectively. The resulting elongated trap has an aspect ratio of ∼ 7 with the weak axis
oriented horizontally. The differential gravitational sag [Lou17] amounts to about 3µm
and can be neglected since the Fermi sea is much larger. These are the initial conditions
for all the measurements presented in this Article.

8.4.2 Relevant parameters

The procedure for thermometry in our mixture of 41K and 6Li atoms is different for
the two experimental regimes. In the case of THC we determine the temperature in a
standard way by ballistic expansion of the K atoms after releasing them from the trap.
In the case of PBEC we follow the approach described in Ref. [Lou17], where we release
the atoms from the trap to determine the condensate fraction of the K atoms. From
this and the known atom numbers and trap frequencies, we calculate the temperature.
For a PBEC, this thermometry method proved to be more accurate than the standard
ballistic expansion method [Lou17]. The density profiles of both the degenerate Li Fermi
gas and the bosonic K cloud are calculated using standard textbook relations [Pit16].
We neglect small finite-size or interaction corrections for the condensate [Lou18b].
In order to determine the relevant parameters of our system we take into account that
the Fermi pressure acts on the Li atoms, and that the optical potential is about two
times deeper for K. This leads to the potassium sample being much smaller than the
spatial extent of the lithium cloud, which allows us to treat the latter as an essentially
homogeneous environment [Koh12]. Since we obtain our spectroscopic signal from the K
component, we introduce the K-averaged atom number densities, n̄Li and n̄K, for both
species,

n̄Li,K =
1

NK

∫
nLi,K(r)nK(r)d3r, (8.1)

with nLi,K(r) being the local number density at position r of Li and K, respectively.
Similarly we define the effective Fermi energy as

εF =
1

NK

∫
EF(r)nK(r)d3r, (8.2)

where the local Fermi energy at position r is given by

EF(r) =
~2(6π2nLi(r))2/3

2mLi
. (8.3)

1Note that the atom numbers in the PBEC and in the THC slightly differ, due to the different
preparation methods.

2Hanna, T. and Tiesinga, E.(private communication)
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Finally, we define the effective Fermi wave number as κF =
√

2mLiεF/~.

In Table 8.1 we present an overview of typical values for important experimental param-
eters, which we adjust to measure the polaron spectra, as discussed in Sec. 8.5.1. Since
such a measurement consists of many individual spectra, the given uncertainties reflect
the standard deviation for all spectra. We introduce the dimensionless range param-
eter κFR∗ [Pet04], which quantifies the character of the Feshbach resonance (open- or
closed-channel dominated), and the reduced temperature of the sample kBT/εF, where
kB is the Boltzmann constant. The total atom numbers of Li (NLi) and K (NK) are
listed, and we give the concentrations CK2 = n̄K2/n̄Li and CK2,BEC = n̄K2,BEC/n̄Li for the
thermal and the condensed part of the non-interacting sample, respectively. Note that
in the majority of our measurements, we state the concentration of the non-interacting
sample. The value for the interacting case CK1 = n̄K1/n̄Li is experimentally not directly
accessible because of interaction effects on the spatial distribution and can thus only be
estimated in Sec. 8.5.2.

Table 8.1: Table of experimental parameter values for measurements on the thermal
cloud (THC) and partial BEC (PBEC).

parameter THC PBEC
εF kB × 930(60) nK kB × 620(50) nK
1/κF 4000(130) a0 4800(200) a0

κFR
∗ 0.57(2) 0.47(2)

T 130(13) nK 118(21) nK
kBT/εF 0.14(1) 0.19(3)
NLi 2.8(2)× 105 1.2(1)× 105

NK 1.2(1)× 104 2.7(3)× 104

n̄Li 1.9(2)× 1012cm−3 1.0(1)× 1012cm−3

n̄K 0.92(7)× 1012cm−3 1.4(1)× 1012cm−3

n̄K,BEC – 3.8(1)× 1013cm−3

CK2 0.61(7) 1.5(5)
CK2,BEC

3 – 36(6)
β – 0.46(7)

8.4.3 Interaction tuning

An interspecies Feshbach resonance (FR) centered at B0 = 335.080(1)G between the
atoms in states Li|1〉 and K|1〉 (F = 1,mF = 1) enables us to tune the s-wave interaction
by varying the magnetic field. In Appendix 8.8 we report on the accurate determination
of B0, including our trap-specific light shift [Lou18b]. This allows us to adjust the
interspecies scattering length a according to the relation [Chi10]

a = abg

(
1− ∆

B −B0

)
, (8.4)

where ∆ = 0.9487G is the width and abg = 60.865 a0 is the background scattering
length of the Feshbach resonance, as explained in detail in the Supplemental Material
of Ref. [Lou18b].
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In order to quantify the interspecies interaction strength in our system we introduce
the dimensionless interaction parameter X = −1/(κFa). Most of the measurements
presented in this Article are conducted in the strongly interacting regime (−1 . X . 1),
which raises the question of accuracy and precision in our knowledge of the magnetic field
strength. Therefore, we experimentally determined the residual fluctuations around the
target value, resulting in a statistical uncertainty of σB = 0.5mG, which translates to
a corresponding uncertainty σX < 0.035 of the interaction parameter. Furthermore, we
observe a slow drift of the magnetic field strength, which we take into account by taking
the average value of the magnetic field determined before and after each measurement.
We disregard all measurements that exceed a magnetic field drift of 3mG.

The uncertainty in the B field and the fact that our FR is extending over a rather
small magnetic field region set the resolution we can achieve for X. For this reason,
we discretize the variation of the interaction parameter and divide a region between
−1.5 < X < 1.5 into 12 bins, each having a width of ∼ 0.25. Individual bins in the full
spectrum, presented in Fig. 8.2, contain averages of 1-4 measurements.

8.4.4 Radio-frequency excitation scheme

In order to probe the spectral function of our K atoms across the Feshbach resonance
we use radio-frequency (RF) spectroscopy. There are two main schemes, referred to as
“injection” and “ejection” spectroscopy, which shed light on different aspects of the system
[Mas14, Liu20]. We choose the former, in which we transfer the minority atoms from
a state that is to a good approximation non-interacting into an interacting state. One
advantage of this method is that the system can be transferred to a strongly interacting
state that is not necessarily the ground state of the system. It therefore enables us
to study the repulsive polaron as a metastable state [Mas11, Koh12] along with its
non-equilibrium evolution.

The system is excited by an RF pulse that transfers atoms from the non-interacting K|2〉
to the interacting K|1〉 state in the presence of Li|1〉. In order to avoid side lobes in the
spectrum we use a Blackman-shaped pulse. We adjust it to be a resonant π-pulse for a
bare K cloud, i.e. in the absence of the Li atoms. The power is chosen such that at the
resonance frequency ν0, where the maximum transfer occurs, we have a pulse duration
of τRF = 1ms. This duration was chosen as a compromise between spectral resolution
and lifetime. The former is set by the spectral width of the RF pulse σRF = 0.7 kHz,
which, depending on the specific sample preparation, is around σRF ≈ 0.04 εF/~. The
latter is given by the shortest lifetime of the polaron, which we estimated to be around
1ms.

The presence of Li changes the frequency of maximum transfer because of interactions
between the two species. In most of our measurement we vary the frequency detuning
∆ν = ν0−ν, keeping the pulse power unchanged, and observe the transferred fraction of
potassium atoms NK1/Ntot, where NK1 is the atom number in the K|1〉 state and Ntot =

NK1+NK2 is the total atom number in both states. The dependence of the spectroscopic
signal NK1/Ntot on ∆ν reflects the energy spectrum of our strongly interacting system
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Figure 8.2: Spectral response of a bosonic 41K sample immersed in a 6Li Fermi sea.
Panels (a) and (b) show the measured excitation spectra in the thermal cloud (THC)
regime and the partially condensed (PBEC) regime, respectively. The spectra are shown
as a function of the interaction parameter X = −1/(κFa) and the dimensionless RF
detuning h∆ν/εF . The color map refers to the transferred fraction of atoms from K|2〉
to K|1〉. Red dashed and orange dash-dotted lines illustrate our theoretical predictions
for the polaron and molecule energies in the single-impurity limit, respectively.

of K|1〉 atoms immersed in a Li|1〉 Fermi sea. We determine the uncertainty of the atom
numbers from the standard deviation of repeated measurements. A small non-zero
background, especially in the PBEC regime, may be attributed to imaging artefacts4

and is directly subtracted from the data.

8.5 Experimental results

In this Section, we present our experimental observations. In Sec. 8.5.1, we discuss our
RF measurements of the spectral response of the K atoms. Following this, we describe
in Sec. 8.5.2 our findings on the energy of the repulsive Fermi polaron as we vary the
density of the thermal K atoms of a partial BEC. The emergence of Bose polarons in
the condensed component is discussed in Sec. 8.5.3. Then we present our observations
on the lifetime of the repulsive Fermi polaron and discuss possible decay channels in
Sec. 8.5.4, before we finally examine the behavior of the K atoms in the PBEC regime
on the basis of Rabi oscillation measurements in Sec. 8.5.5.

8.5.1 Spectral response

In order to investigate the full spectral response of the system across the strongly in-
teracting regime, we combine RF spectra taken at different values of X. The spectra,
recorded in the thermal (THC) and partially condensed (PBEC) regime, are depicted
in Figs. 8.2(a) and (b). The x-axis represents the discretized dimensionless interac-
tion parameter X, as discussed in Sec. 8.4.3. Each bin shows the transferred fraction
NK1/Ntot as a function of the energy detuning of the RF pulse h∆ν normalized to
εF. The theoretical predictions, red dashed and orange dash-dotted lines, denote a

4Attributed to imaging artefacts, our absorption pictures show a residual signal in K|1〉 when imaging
a BEC in K|2〉. We explain this by scattering off-resonant light from a very dense atomic sample and
subtract the resulting signal from the real atom number.
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Figure 8.3: Typical polaron spectra in the THC (a) and PBEC (b) regime. We
show the fraction of transferred atoms as a function of the frequency detuning ∆ν of
the applied RF pulse at an interaction strength of X ≈ −0.7. The shaded areas under
the curves illustrate the contributions resulting from a fit by a double-Gaussian (THC,
left) and triple-Gaussian (PBEC, right) function. Black dashed lines depict their sum.
The width of the narrow peaks is fixed to the Fourier width of the applied pulse. The
measurement points marked by black squares in (b) are further investigated in Fig. 8.4.
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Figure 8.4: Absorption images of K|1〉 corresponding to the two measurements,
marked by black squares in Fig. 8.3(b) and a K|2〉 reference image after a short time
of flight of 6ms and 4ms, respectively. The left panel and the middle panel show
the atoms at the transfer frequencies ∆νBEC and ∆νp, respectively. The color map
depicts the column density in arbitrary units. The field-of-view of all images is about
(150 × 230)µm. The white solid lines show the corresponding projected line-density
profiles. A reference picture of the K|2〉 cloud, before transfer, with β ≈ 0.5 is shown
in the panel on the right.

variational calculation describing a single impurity interacting with a Fermi sea using
a two-channel model [Koh12, Mas12]. The dimensionless range parameter in the two
regimes is κFR∗ = 0.57(2) and κFR∗ = 0.47(2), respectively.

In Fig. 8.2(a) we show the full spectral response in the THC regime. We observe a
typical polaron spectrum consisting of the repulsive and the attractive branch exhibiting
a positive and negative energy shift, respectively, and a decrease of contrast as the
interaction is tuned close toX = 0. The obtained polaron energies are in good agreement
with the theoretical predictions for the single impurity scenario, represented by the red
dashed lines, although the concentration CK2 = 0.61(7) in this measurement is fairly
high.
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Figure 8.2(b) shows the spectrum in the PBEC regime. A striking difference between
the THC and PBEC spectra is that in the latter a new branch, which shows almost no
energy shift, emerges in the spectrum. The bimodal spectral response is a consequence
of different resonance frequencies of the transfer to the K|1〉 state for the two components
of the gas. The thermal part of the K cloud appears to behave like in the single impurity
limit, even though the K density is similar to the Li density. In stark contrast to this, the
condensed part is transferred at a frequency close to the non-interacting value ∆ν = 0,
with a small but consistent upshift corresponding to a few percent of the Fermi energy.
As we discuss in Sec. 8.5.3, this shift can be attributed to the formation of Bose polarons,
where the Li atoms are now the impurities.

In order to further investigate the differences between the THC and PBEC regimes we
show two sample spectra at an interaction strength of X ≈ −0.7 in Figs. 8.3(a) and
(b), respectively. In the THC regime we find a single narrow peak, which we attribute
to the Fermi polaron, along with a broader pedestal, which we interpret as a many-
body continuum of states. The observed spectrum can be well approximated by a
double Gaussian fit Gp(∆ν) +Gbg(∆ν), as also used in our previous work [Koh12]. The
function takes the form Gα(∆ν) = Aαe

−(∆ν−∆να)2/(2σα2), with Aα, ∆να, σα representing
the amplitude, center and width of the Gaussian for α = p, bg. The polaron peak, α = p,
is fixed to a spectral pulse width of σp = 0.7 kHz ≈ 0.04 εF/h, which corresponds to the
Fourier width resulting from the finite duration of the 1-ms RF pulse. The background,
α = bg, is marked by the gray, broad Gaussian. We transfer about 50% of the atoms
into the interacting state at a frequency detuning corresponding to h∆ν ≈ 0.2εF .

In the PBEC regime, depicted in Fig. 8.3(b), we identify a maximum transfer at two
well-defined frequencies. We approximate the lineshape of the whole spectrum by a
triple-Gaussian function. The first two parts stem from the polaron and the many-body
continuum G̃p(∆ν) + G̃bg(∆ν). We assume that the ratio of the two amplitudes stays the
same as determined in Fig. 8.3(a), but their absolute values are reduced corresponding
to the fraction of non-condensed atoms, as G̃p,bg(∆ν) = Gp,bg(∆ν)× (1− β). The third
part describes the transfer of the condensed fraction G̃BEC(∆ν) = GBEC(∆ν)× β at a
small energy shift.

In the two panels on the left of Fig. 8.4, we show absorption images of atoms in K|1〉,
after a short time of flight of 6ms, which were released from the trap within ∼ 10µs after
the RF pulse. The two pictures correspond to the measurements for the two frequency
detunings ∆νBEC and ∆νp, for which we have observed maximum transfer of the BEC
and the thermal cloud, respectively. These two detunings are marked by black squares
in Fig 8.3(b). The atomic clouds in the images have the same atom number, but very
different spatial distributions. The left panel shows a dense cloud that only extends over
about 40µm, whereas the middle panel shows dilute atoms that are distributed over
the whole picture. In the right image we present a reference picture of a K|2〉 cloud
before transfer, with a BEC fraction of β ≈ 0.5. Comparing these images shows that
a fraction of the non-condensed part is transferred in the middle picture and a fraction
of the condensed part is transferred in the left picture. This strongly supports our
interpretation that the two different frequencies correspond to the resonance frequencies
of the two components of the partial BEC.
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Figure 8.5: Concentration dependence of the energy of the repulsive Fermi polaron.
The color code refers to the interaction strength X. The solid and dashed lines show the
theoretical predictions including polaron-polaron interactions, according to Eq. (8.32),
for the mean value and its standard deviation of X = −0.6±0.1. The grey circle marks
the measurement with the highest temperature kBT/εF = 0.27 (see discussion in text).

To conclude this part, our observations show that the spectra for the THC and the
non-condensed part of the PBEC sample are consistent with a theoretical description
of the Fermi polaron, and with our previous measurements on the Fermi polaron with
fermionic impurities [Koh12]. In contrast, the condensed part of the partial BEC, which
has a very large concentration of K atoms with CK2 ≈ 36, shows a much smaller energy
shift that seems unrelated to the Fermi polaron.

8.5.2 Concentration variation

We now investigate closer the effects of a finite impurity concentration. In particular,
we expect on general grounds that there are interactions between the polarons, which
should show up as a change in their energy as a function of their concentration [Bay91].
In order to explore this, we take a set of spectra for densities in the range 0 < CK2 < 45

at an interaction strength X = −0.6(1). Here, the uncertainty denotes the standard de-
viation that characterizes typical experimental fluctuations. We vary the concentration
by changing various parameters such as the loading time and the evaporation endpoint
in our preparation sequence.

Since only a fraction of the atoms in K|2〉 is transferred and only atoms in K|1〉 can
be responsible for interaction effects, the concentration CK1 is the relevant parameter.
This, however, cannot be obtained directly because of our incomplete knowledge of in-
teraction effects on the spatial distribution during the RF pulse. We therefore introduce
estimated concentrations, obtained by multiplying the concentration of K|2〉 by the es-
timated transferred fraction at the resonance frequency. The measurements presented
here are conducted in the PBEC regime and we can therefore obtain two concentrations
C̃K1,p = CK2 × (Ãp + Ãbg)/(1− β) and C̃K1,BEC = CK2 × ÃBEC/β for the non-condensed
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and the condensed component of the K-atoms, respectively. The amplitudes Ãα corre-
spond to the fitting amplitudes, as discussed in Sec. 8.5.1.

In Fig. 8.5 we show our results regarding the density variation of the energy of the
repulsive polaron. The color scale indicates the particular values of the interaction
parameter X for each data point. From Fermi liquid theory we know that there is
an effective interaction f between the polarons mediated by the Fermi gas [Bay91].
As shown in Ref. [Yu12] (see also App. 8.9), the effective interaction has a direct and
an exchange contribution. For low temperature and arbitrary Bose-Fermi interaction
strength, it can be calculated from the density of states N at the Fermi surface of the
Li atoms and from the number ∆N of Li atoms in the dressing cloud of the polaron as
f = −∆N2/N + g1. Here, g1 = 4π~2a11/mK represents the direct interaction between
two K|1〉 atoms, where a11 is the corresponding scattering length. Note that the induced
interaction −∆N2/N , mediated by the Fermi gas, is attractive since the K atoms are
bosonic. Taking into account that the RF injection spectroscopy gradually increases the
impurity concentration, so that the signal is averaged from zero to the final K density, the
observed average energy shift is E(n) = E(0) + fn/2, see App. 8.9 for details. The lines
in Fig. 8.5 are obtained from this formula where the solid and dashed lines correspond to
an interaction strength of X = −0.6 and ± its standard experimental deviation of 0.1.
We note that due to the small value of the scattering length a11 between the atoms in
K|1〉, the negative slope of these lines is essentially only due to the mediated interaction
−∆N2/N .

From Fig. 8.5 we see that our experimental observations are consistent with the pre-
dicted concentration dependence of the polaron energy. The mean temperature of the
measurements presented is kBT/εF = 0.17(2) so that we expect the result to be fairly
close to the zero-temperature limit assumed by the theory. The measurement marked by
the grey circle has an exceptionally high temperature of kBT/εF = 0.27. We therefore
suspect that this data point is subject to a significant finite-temperature shift and may
thus be considered an outlier.

Given the large fluctuations in the data and the predicted small influence of the effective
interaction, we cannot provide conclusive evidence of its presence. Instead, the com-
parison shows that future improved experiments may indeed open up the possibility to
observe the effect of polaron-polaron interactions, for which a clear observation is still
missing in the field of ultracold quantum gases.

8.5.3 Bose polarons

We now turn to the low-energy peak, which, as we have shown, comes from the condensed
fraction of the K atoms. In Fig. 8.6, the position of this peak is shown as a function of
the impurity concentration, extracted from the same dataset as presented in Sec. 8.5.2.
We observe a small and consistent energy shift of ∼ 0.04. An estimation of this energy
shift may be obtained as follows.
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Figure 8.6: Concentration dependence of the observed BEC peak position. The color
code refers to the interaction strength X and the grey circle marks the measurement
with highest temperature, as in Fig. 8.5. A fit to the data of the theoretical prediction
according to Eq. (8.5) is shown as the red solid line. The error bars of the data points
represent the uncertainties of the fits.

First, since the three scattering lengths between the K atoms in the two spin states (a11,
a22 and a12) differ by less than 0.3% 5, the energy shift must be attributed mostly to K-
Li interactions. Second, since the density of the condensed part of the K atoms is much
higher than for the Li atoms in the center of the trap, the situation is reversed in the sense
that one can now regard the Li atoms as impurities in a BEC of K atoms. A suitable
framework to analyze this is therefore the one of Bose polarons, formed by Li atoms in the
K|1〉 BEC, rather than the one of Fermi polarons. The total energy shift can therefore
be estimated as ∆Etot = NLiELi, where NLi is the number of Li atoms inside the K|1〉
BEC, and ELi is the energy of a single Bose polaron. In the strongly interacting region
on the BEC side of the resonance (X ≈ −0.6), a repulsive Bose polaron has a typical
energy ELi = ξεn, where ξ is a constant of order unity [Hu16, Jør16, PA19, Yan20a,
Sko21]. The energy scale εn of the Bose gas is defined, in analogy with the Fermi energy,
as εn = ~2κ2

n/(2mK), with κn = (6πn̄K1,BEC)1/3 so that εn/εF = (mLi/mK)(CK1,BEC)2/3.
The relevant concentration is that of the K|1〉 BEC that interacts with the Li atoms,
which we approximate as CK1,BEC ≈ C̃K1,BEC. Since RF spectroscopy measures the
energy shift per atom transferred from K|2〉 to K|1〉, the relevant quantity is the energy
shift per K atom in the K|1〉 BEC, which is given by

∆Etot/NK1,BEC = (6/41)(C̃K1,BEC)−1/3ξεF. (8.5)

With ξ as the only free parameter, Eq. (8.5) can then be fitted to the experimental
data displayed in Fig. 8.6, which yields ξ ≈ 0.5. The resulting curve, shown by the solid
line in Fig. 8.6, reasonably agrees with the data. We should however mention a few
caveats. First, the K|1〉 BEC is only formed above a certain critical concentration, but
the RF probe transfers the atoms gradually into the K|1〉 state. This effect is further

5Eberhard Tiemann (private communication)
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Figure 8.7: Decay rate of the polaron for different interaction strengths X. Blue
circles depict the measured lifetimes of the polaron. The orange solid and dashed
lines show theoretical calculations of the two- and three-body decay, respectively. The
three-body recombination rate in vacuum is depicted by the green dash-dotted line.
See App. 8.9 for details.

explored in Sec. 8.5.5. It follows that the observed behavior is presumably a result of
an average BEC density experienced by the Li atoms during the RF probe. Second,
the bosons and the fermions will eventually phase separate for the given interaction
strength [Lou18b, Hua19], which also complicates the interpretation of the experiment.
Nevertheless, the agreement between theory and experiment for a reasonable value of
the fit parameter, ξ ≈ 0.5, suggests that the observed shift of the BEC energy is, indeed,
due to the formation of Bose polarons in the center of trap.

8.5.4 Lifetime of repulsive polaron

The repulsive Fermi polaron is a metastable quasiparticle, which can decay via two- or
three-body processes into lower energy states [Mas11, Mas14]. In order to determine
its lifetime, we carry out measurements in the THC regime for X < 0. The repulsive
polaron is populated by applying a π-pulse with a duration τ = 0.3ms (instead of
the 1ms used in all measurements shown before) and frequency detuning ∆νp. In this
way, we resonantly excite the quasiparticle with a short pulse in order to maximize
the number of transferred atoms. After this excitation, about ∼ 50% of the atoms are
found to remain in K|2〉. We therefore apply a 10µs resonant “cleaning” light pulse to
remove them from the trap, thus creating a pure sample of strongly interacting K|1〉
and Li|1〉 atoms. At this point, we wait for a variable time before applying another RF
pulse, identical to the first one, which only addresses the polarons that have not yet
decayed. In contrast to all measurements presented so far, the measured signal is now
the fraction of atoms transferred back into the non-interacting state K|2〉. We fit an
exponential decay to the data sets obtained for various values of X and extract the 1/e

decay time τp, which represents the lifetime of the polaron.
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Figure 8.8: Ejection spectra of the repulsive polaron and its decay products. We
show the fraction of atoms transferred from K|1〉 to K|2〉 as a function of the applied
RF signal. The blue circles, red diamonds, green squares show the spectrum after a
decay time of 1.2ms, 2.2ms, 5.2ms. These three measurements are normalized to the
total atom number of the measurements with the shortest wait time (blue circles). As
a comparison, we also show a molecule spectrum (gray empty circles).

The blue circles in Fig. 8.7 show the repulsive polaron decay rate Γ = 1/τp as a function of
the interaction strength. Approaching the resonance, the decay rate rises from 10−3 εF/~
at X = −1.5 to about 10−2 εF/~ at X ≈ −0.2. This corresponds to polaron lifetimes
between ∼ 10ms and ∼ 1ms and is in excellent agreement with our previous experiments
on Fermi polarons with fermionic impurities [Koh12].

The solid line in Fig. 8.7 is a theoretical prediction based on the assumption that the
repulsive polaron decays via a two-body process into the attractive polaron, which due
to its high kinetic energy can be approximated by a free particle. The dashed line gives,
on the other hand, the three-body decay rate into the molecule, taking into account
medium effects in the perturbative regime. Finally, the green dash-dotted line shows
the three-body decay rate in a vacuum for a broad resonance [Pet03], adapted here to
describe a narrow resonance. For details on the calculations of these rates, see App. 8.9.
By comparing these theory lines with the data, we see that two-body decay into the
attractive polaron seems to be the main loss channel for strong interactions. However,
for weaker interactions the attractive polaron is ill-defined, due to the smallness of its
residue and decay into the molecular states. In this regime, three-body decay processes
become dominant. This is consistent with the observations for the case of fermionic
impurities [Koh12, Sca17].

We observe a residual signal remaining in K|1〉 after the second RF pulse, which transfers
the repulsive polarons into K|2〉. It consists of remaining polarons and its decay products.
In order to investigate the nature of the residual component, we let the polaron decay
for a time t and then we apply ejection spectroscopy. In contrast to the measurement
described so far, we now vary the frequency of the second RF pulse, which transfers K|1〉
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atoms back to K|2〉. In Fig. 8.8 we show such measurements for the three decay times
t1 = 1.2ms, t2 = 2.2ms, and t3 = 5.2ms, all taken at the same interaction strength
X = −0.80(2). We show the transferred fraction NK2/Ninit normalized to the total
atom number Ninit = NK1(t1) +NK2(t1) after a wait time of t1. The blue circles, red
diamonds, and green squares represent the ejection spectra recorded after waiting times
of t1, t2, and t3, respectively.

We expect that the decay product consists of molecules, since this is the predicted
ground state for X = −0.80. In order to check this, we compare the ejection spectra
with a molecule dissociation spectrum, shown by the gray open circles in Fig. 8.8. To
obtain this spectrum, we start with a THC sample in the non-interacting state. Then we
associate molecules by applying a 3π pulse to K|2〉 at a frequency adjusted such that it
corresponds to the binding energy of the molecule at X = −0.80 (see App. 8.8). Since we
do not transfer all K|2〉 atoms into the molecular state, we apply a resonant “cleaning”
light pulse, which removes the remaining atoms from the trap. This leaves us with a
mixed sample of Li|1〉-K|1〉 molecules and bare Li|1〉 atoms. Then we perform ejection
spectroscopy to probe the spectrum of the molecule. This is achieved by applying
another 3π pulse to dissociate the molecules, where we vary the frequency. Note that
this particular spectrum is normalized to its own total atom number Ninit = Ntot.

Let us now compare the four ejection spectra presented in Fig. 8.8. In the measurement
at the shortest decay time (blue circles) we recognize a narrow peak at positive energies,
which we identify as the repulsive polaron. The broad pedestal at negative energies
on the other hand reflects the response of the molecules, since it is similar to the bare
molecular spectrum. As we increase the wait time from t1 to t2 and then to t3, we observe
a decrease of transferred atoms at the repulsive polaron frequency, as a consequence of
its decay.

Given that the polarons decay into molecules, we would expect a corresponding increase
in their spectral signal, i.e. the broad pedestal. This is however not observed. Instead,
as the wait time of the measurements in Fig. 8.8 is increased from t1 to t3, we see
a reduction of K atoms in the trap by a factor of ∼ 2, while the broad pedestal is
unchanged. From this, and the measurements presented in Fig. 8.7, we speculate that
the repulsive polarons decay into molecules, which themselves undergo relatively fast
collisional decay into lower lying molecular states, where the excess energy of the latter
is sufficient to remove the atoms from the trap. We believe Bose-Fermi dimers are
less robust against collisions as compared to Fermi-Fermi dimers, for which we have
demonstrated a Pauli suppression effect in Ref. [Jag16].

8.5.5 Rabi oscillation measurements

We now further investigate the nature of the thermal and condensed parts of the K
cloud by performing Rabi oscillation measurements, as shown in Fig. 8.9. A 1-ms RF
pulse is applied to transfer atoms from K|2〉 into K|1〉. The transferred fraction of
atoms is then measured as a function of the pulse area A =

√
P/Pπ, where the peak

RF power P of our Blackman pulse is the experimentally controlled variable and Pπ is
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Figure 8.9: Rabi oscillation measurements. We show the dependence of the trans-
ferred fraction on the pulse area, normalized to a 1 -ms RF π-pulse in the non-interacting
case. The black squares show the Rabi oscillations of a non-interacting sample. The
two further measurements are conducted in the THC and the PBEC regime at νp (blue
circles) and νBEC (red diamonds), respectively. The black and red dashed lines show a
sin2 oscillation at the non-interacting Rabi frequency, where the latter has a reduced
amplitude by the factor β, corresponding to the BEC fraction. The blue and red
dash-dotted curve show the initial transient of a sin2 oscillation with Rabi frequencies
reduced by the interaction. Right-hand panel: the region of weaker RF pulses, marked
by the shaded area, is plotted against the square of the pulse area A2.

the corresponding power to achieve a π-pulse in a non-interacting case. First, we take
a reference measurement with Li removed from the trap. As we vary the RF power
the black squares show the Rabi oscillations of the non-interacting sample, which are
well fitted with a sin2 function, as illustrated by the black dashed line. After this, we
prepare our atoms in the THC at X ≈ −0.5 and tune the radio frequency to the polaron
peak at νp (blue circles). We observe an initial increase in the signal that follows a sin2

behavior (dash-dotted blue line). For A & 1, this changes into a steady increase in the
transferred fraction with no clear oscillations. We can explain this effect by the decay
of the polaron to other states, such as molecules [Mas12]. Such states have a reduced
overlap with the non-interacting state. Therefore, the transfer probability from K|2〉
to K|1〉 is higher than the backtransfer from the dressed molecular state to K|2〉. This
results in a growing population in K|1〉 with increasing RF power.

When we prepare a PBEC sample and tune the frequency of the RF pulse to νBEC (red
diamonds) the system behaves in a very different way. In the region A & 1 of Fig. 8.9,
we observe a clear oscillating behavior, depicted by the red dashed line. The frequency
is the same as for the non-interacting case, but the amplitude is reduced by a factor that
is close to the BEC fraction β. This is consistent with a BEC of K atoms oscillating
between the |1〉 and |2〉 states, in a way, largely unaffected by the small concentration of
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Li atoms. The increasing background can be attributed to an off-resonant contribution
originated from the non-condensed component.

A remarkable feature shows up in the behavior of the condensate for weak RF pulses. For
0 < A . 1, we find that the atom transfer is inhibited. In order to highlight this striking
effect, we plot the transferred fraction in the region of small pulse areas, marked by the
shaded region, as a function ofA2 in the right panel of Fig. 8.9. This representation turns
an initial quadratic dependence on A, typical for the coherent evolution of a quantum
system, into a linear depence on A2. Such a behavior is nicely visible in all three data
sets. However the red diamonds show a transfer of the BEC only after a critical value
of A2 ≈ 0.4 is reached.

This peculiar effect likely arises from a density-dependent shift of the resonance fre-
quency. In the regime of low concentration CK1 the final state of the system is the Fermi
polaron. This results in almost no transfer, for small A in Fig. 8.9, since the detuning
of the RF pulse to the polaron energy is about ∼ 4Γp, where Γp is the spectral width of
the polaron peak and the Fourier width of the RF pulse is 1/τRF ≈ Γp. On the other
hand, when the RF pulse transfers enough atoms to create a K|1〉 BEC, the resonance
frequency shifts to the one determined by the Bose polarons and permits the transfer to
start.

On top of this effect, as the BEC density increases in K|1〉, phase separation may occur
and can remove the fermions from the spatial region occupied by the bosons [Lou18b,
Hua19]. We estimate this effect to take place while the RF pulse is applied, since there is
no clear separation of the corresponding time scales in our experiment. In this scenario,
the two species will separate at an RF power that is high enough for a significant fraction
of the BEC to be transferred. After this, the K cloud will exhibit Rabi oscillations similar
to the non-interacting case.

The origin of the observed inhibition of Rabi oscillations of an RF-coupled BEC in the
environment of a Fermi sea is an interesting many-body phenomenon and needs further
investigation in future work.

8.6 Summary and conclusion

We have presented first observations concerning the Fermi polaron with bosonic impu-
rities and its differences with respect to fermionic impurities. The quantum-statistical
nature of the impurities, which does not matter in the single-particle limit, enters the
problem at higher concentration and can profoundly change the properties of the sys-
tem. We have explored the case of high densities below and above the threshold for
Bose-Einstein condensation of the impurity cloud and found very different behavior.

For a thermal impurity cloud we have probed the energy of the attractive and the re-
pulsive quasiparticle branch across the strongly interacting regime and found properties
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very similar to those of the previously investigated Fermi-Fermi system. Our observa-
tions are, within the experimental uncertainties, fully consistent with the single-impurity
theoretical predictions despite the fact that the concentration is near unity.

In order to increase the impurity concentration we have cooled the sample further to
create a partial BEC. The spectral response of this dense system reveals a drastic change
of the spectrum. We find that, in addition to the signature of the repulsive and attractive
polaron, a new branch, the BEC branch, emerges in the spectrum, which shows no sign
of the Fermi polaron anymore. Instead we find a small positive shift in energy over a wide
range of interactions.We speculate that, since the concentration far exceeds unity, this
effect may be explained by an interchange of the role of the two atomic species, where
the BEC and the Fermi sea represent the environment and the impurities, respectively.
Such a scenario is usually described by the Bose polaron [Hu16, Jør16]. This suggests
that the Fermi and the Bose polaron appear as different branches of one spectrum.

We have dedicated particular attention to the region of positive scattering lengths, where
the repulsive Fermi polaron is realized. As we vary the concentration, the energy shift
of the condensed component of the partial BEC remains small and positive. We find
good qualitative agreement with a Bose polaron description, where the back action of
the Bose polarons on the surrounding results in a small, but clearly observable energy
shift.

As we investigate the concentration dependence of the thermal component of the partial
BEC closer, at strong repulsive interactions, our results indicate a slightly smaller energy
of the Fermi polaron than expected from a single-impurity prediction. The experimental
uncertainty in the determination of the interaction strength, which is very sensitive to
magnetic field fluctuations, renders a qualitative analysis impossible. However, theoreti-
cal calculations, including polaron-polaron interactions, predict a decreasing energy shift
with increasing concentration, which is consistent with our experimental data. This sug-
gests that interaction effects amongst polarons could be observed in future more precise
measurements.

In order to further characterize the metastable repulsive Fermi polaron, we have mea-
sured its decay rate and compared it to theoretical predictions of different decay chan-
nels. Our observations close to the center of the FR are in very good agreement with
two-body scattering processes, where the repulsive polaron decays into a bare parti-
cle. Furthermore we find qualitative agreement between the measured decay rates for
moderate interactions and our theoretical calculations of three-body decay.

In order to gain further insight into the transitional behavior from low to high concentra-
tion, we vary the strength of the spectroscopy pulse that transfers the partial BEC into
the state strongly interacting with the fermionic medium. For low pulse strengths, we
observe a peculiar interaction-induced inhibition of the transfer, whereas for high pulse
strengths we essentially recover the behavior of a non-interacting cloud. This striking
result suggests a shift of the resonance frequency with changing concentration, which
supports our interpretation of a transition of our mixture between regimes governed by
two fundamental quasiparticles, the Fermi and the Bose polaron.
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Our capability of creating a partial BEC, which interacts strongly with a surrounding
Fermi sea, allows us to investigate the behavior of vastly different concentration regimes,
in the same setup. Future measurements focused on the transition between the two fun-
damentally different polarons could shed light on the largely unknown physics beyond
the single quasiparticle picture, where polaron-polaron interactions play a significant
role. Conducting measurements on that order of precision will require even better mag-
netic field control and more stable conditions, which seems feasible with further technical
improvements. In addition, time-domain methods [Cet15, Cet16] may provide deeper
insight into density-dependent behavior. The unambiguous observation of such effects
would represent a major step, since effective interactions are an integral part of Landau’s
theory of quasiparticles leading to many of its non-trivial predictions.
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8.8 Appendix: Accurate determination of the Feshbach
resonance center

In all measurements described in this manuscript we tune the inter-particle interaction by
means of a particular Feshbach resonance (FR). The exact determination of the Feshbach
resonance center B0 of the FR on the mG scale is crucial in our experiment since the
strongly interacting regime is only about ±12mG wide. Our previous determinations
of the FR parameters are explained in detail in the Supplemental Material of [Lou18b].
Following a slightly different technique, we determine the molecule’s binding energy Eb,
in vacuum, at different interaction strengths and fit it with

Eb =
~2

8(R∗)2mr

(√
1− 4R∗(B −B0)

abg∆
− 1

)2

, (8.6)

derived in [Pet04, Lev11]. The reduced mass mr = mFmB/(mF +mB), the resonance
width ∆ = 0.9487G, the range parameter [Pet04] R∗ = 2241(7) a0, and the background
scattering length abg = 60.865 a0 are known, which leaves B0 as the only fitting param-
eter in this model. It is important to note, that Eq. (8.6) describes the binding energy
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Figure 8.10: Molecule dissociation measurement. The transferred fraction to K|2〉
(color scale) is shown in dependence of magnetic field and radio-frequency detuning for
various magnetic fields around the center of the Feshbach resonance. The inset shows an
example spectrum, taken at B − B0 ≈ −37mG. After determining the binding energy
of the molecules as a function of the interaction strength we fit the resulting data by
Eq. (8.6), shown by the red dashed line, with B0 as the only fitting parameter.

of molecules in vacuum. Interactions with the remaining Fermi sea are not included and
can lead to a systematic shift on the order of 5mG.

In contrast to our previous method (see Appendix of [Lou18b]), B0 is determined by
molecule dissociation in vacuum via ejection spectroscopy. The measurement consists
of the creation of molecules in the THC regime at X ≈ −0.8 by applying an RF pulse
to the K|2〉 atoms at a frequency that corresponds to the binding energy νRF ≈ Eb/h,
which we optimize roughly on maximum molecule association efficiency. Then, we ramp
the magnetic field to lower X values and therefore increase the binding energy. This
procedure prevents the molecules from dissociating as we apply an RF pulse to transfer
the remaining unbound Li|1〉 atoms into Li|2〉. To be sure that no particles, except the
molecules, are present we apply a 10µs resonant cleaning pulse to Li|2〉 and another one
to K|2〉. Then we ramp back the magnetic field to reach the final interaction strength
X for which we want to determine the binding energy. At this field we apply another
RF pulse to transfer the K1 atoms into K2 and consequently dissociate the molecules.
As we vary the frequency of this last pulse, we obtain the dissociation spectrum with
a line shape determined by the frequency-dependence of the Franck-Condon factor, as
described in Ref. [Chi05]. The inset of Fig. 8.10 shows a sample spectrum at a magnetic
detuning B − B0 ≈ −37mG and the corresponding fit to extract the binding energy.
We record dissociation spectra in a range of about 80mG where we expect molecules
to exist. These measurements are presented in Fig. 8.10. A fit to the binding energies
following Eq. (8.6) is illustrated by the red dashed line. The resulting value for the
center of the Feshbach resonance is B0 = 335.080(1)mG. Note that this value refers to
our particular trap setting and includes a light shift of about 25mG. All experiments
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reported here were carried out for the same trap setting, so that we have the same B0

for all our measurements.

8.9 Appendix: Quasiparticle properties of Fermi polarons

In this Appendix, we present the calculations from which we infer the quasiparticle
properties of isolated Fermi polarons and the strength of their mutual interactions.

8.9.1 Properties of isolated polarons

A single impurity with momentum p immersed in a homogeneous Fermi sea may be de-
scribed as a quasiparticle, whose dressing is composed of a superposition of particle-hole
excitations in the Fermi sea. Such a state can be accurately modeled by the variational
Ansatz [Che06]

|ψ〉 = φc†p↓|FS〉+

k>kF∑
q<kF

φkqc
†
p+q−k↓c

†
k↑ cq↑ |FS〉 (8.7)

Here c†pσ creates an impurity (σ =↓) or a majority atom (σ =↑) with momemtum p,
and |FS〉 denotes the unperturbed Fermi sea. We warn the reader that, to avoid clutter,
the notation adopted here slightly differs from the one used in the manuscript.

The minimization of the energy based on this variational Ansatz yields an identical
result to the diagrammatic calculation within the “ladder" (or “forward-scattering")
approximation [Com07], but the latter (once properly analytically continued [Mas11])
allows also to investigate the properties of the repulsive branch, and eventually the effects
of non-zero temperature, in a straightforward way. The retarded self-energy of a single
impurity of mass m↓, with momentum p and energy ω in a Fermi sea of particles with
mass m↑ reads (~ = kB = 1)

Σ(p, ω) =
∑
q

f(ξq↑)T (p + q, ω + ξq↑) (8.8)

=
∑
q

f(ξq↑)

mr
2πã −

∑
k

[
1−f(ξk↑)

ω−(εp+q−k↓+εk↑−εq↑)+i0+
+ 2mr

k2

] , (8.9)

where f(x) = 1/[exp(βx)+1] is the Fermi function at inverse temperature β, and T (P,Ω)

is the T -matrix describing the scattering of an ↑↓ pair of atoms with total momentum
P and total energy Ω. Here we introduced the kinetic energy of a σ atom measured
with respect to the chemical potential ξkσ = εkσ−µσ = k2/2mσ−µσ, the reduced mass
mr = m↑m↓/(m↑ +m↓), and the energy-dependent quantity

1

ã(ω,K)
=

1

a
+R∗k2

r , (8.10)

where kr =
√

2mr[ω −K2/(2M) + EF ] (with K = |p + q| and M = m↑ + m↓) is the
relative momentum of the colliding pair, and EF is the Fermi energy of the homogeneous
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Fermi sea. Since we consider the properties of a single ↓ particle, we have set its chemical
potential to zero.

The Green’s function of the impurity reads

G↓(p, ω) =
1

ω − εp↓ − Σ(p, ω) + i0+
. (8.11)

Its spectral function A = −2Im[G↓] features two branches of excitations, one at negative
and one at positive energies. In the vicinity of these sharp excitations, the Green’s
function at small momenta may be approximated as

G↓(p, ω) ≈ Z±

ω − E± − p2

2m∗±
− iZ±Im[Σ(p, E±)]

. (8.12)

The energy of an attractive (−) polaron at zero momentum is the purely real solution
at negative energies of

E− = Σ(0, E−), (8.13)

while the energy of the repulsive p = 0 polaron is the positive energy solution of

E+ = Re[Σ(0, E+)]. (8.14)

The quasiparticle residues Z are defined as

Z± =
1

1− Re[∂ωΣ(0, ω = E±)]
, (8.15)

and the effective masses are given by

m∗± =
m↓/Z±

1 + Re[∂ε↓pΣ(0, E±)]
. (8.16)

The energy, residue, and effective mass obtained in this way compare very favorably with
both MC simulations and experiments [Pro08, Sch09, Nas09, Koh12, Kos12, Sca17]. The
energies of dressed molecules are instead computed from a related Ansatz, describing a
bare molecule dressed by particle-hole excitations in the medium [Mor09, Pun09, Com09,
Mas12, Tre12, Qi12].

8.9.1.1 Polaron decay

The repulsive polaron is unstable towards decay into lower-lying excitations, but it
remains a well-defined quasi-particle as long as its decay rate Γ is small [Bru10, Mas11,
Koh12, Sca17]. The population decay rate for the 2-body process leading a polaron to
decay onto free particles (pf) is given by

Γpf = −2Z+Im[Σ̃(0, E↓+)], (8.17)
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where Σ̃ is defined in Eq. (S.16) of Ref. [Sca17]. The competing process leading a polaron
to decay onto a dressed molecule is instead given by [Koh12]

Γpm =
64kFa

45π3
(Z3

+ZM )

(
m↑
m∗+

)2(
1 +

m↑
m↑ +m↓

)3/2

×
(

EF
E+ − EM

)5/2 a

a∗
√

1 + 4R∗/a∗
EF , (8.18)

where EM is the energy of a dressed molecule (found by a variational Ansatz à la Chevy),
and a∗ =

√
2mrEb is the typical size of a vacuum dimer at a narrow resonance.

In the extreme BEC limit, where medium effects become negligible, and in presence of
a broad resonance, the three-body recombination proceeds at a rate [Pet03]

Γ3 =

(
ε̄↑
ε

)
αn2
↑. (8.19)

Here, ε̄↑ is the average kinetic energy of majority atoms, ε is the binding energy of the
↑↓ dimer, and α is a constant which for our mass ratio takes the value

α↑ = 2.57
~5

m3
↑ε

2
. (8.20)

We plot for comparison this formula in Fig. 8.7, using for the majority kinetic energy
the T = 0 value ε̄↑ = 3EF /5, and for the dimer binding energy its value at a narrow
resonance, given by Eq. (8.6).

8.9.2 Polaron-polaron interactions

An intrinsic property of quasiparticles is that they interact. Within Fermi liquid theory
[Mor10, Yu10, Yu12], the total energy density of a gas containing N↓ � N↑ impurities
in a large sea of N↑ ideal fermions may be written as

E(n↑, n↓) =
3

5
EFn↑ + E↓n↓ +

1

2
fn2
↓. (8.21)

The first term in this expression represents the energy of the unperturbed Fermi sea,
the second is the contribution of isolated polarons, and the third term is the polaron-
polaron interaction. We have neglected the mean kinetic energy of the impurities, which
is expected to be very small when impurities are bosonic.

The effective interaction f between Landau quasiparticles contains two contributions:
f = g1 + fx. The first one is the direct (or mean-field) interaction, g1 = 4π~2a11/m↓,
where a11 is the scattering length between bare impurities. The second term instead
describes an exchange contribution, mediated by particle-hole excitations in the Fermi
sea. At T = 0, this induced interaction between bosonic impurities is given by [Yu12]

fx = −(∆N)2

N
. (8.22)
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Here N =
3n↑
2EF

is the density of states at the Fermi energy, and ∆N is the number of
particles in the dressing cloud of a polaron, given by [Mas11]

∆N ≡
∂n↑
∂n↓

∣∣∣∣
µ↑

= −
(
∂µ↓
∂n↑

)
n↓

/

(
∂µ↑
∂n↑

)
n↓

≈ −
∂µ↓
∂EF

. (8.23)

In the last step, we used that µ↑ ≈ EF .

We present here a compact derivation of Eq. (8.22), following the lines of the elegant
presentation given in Ref. [Yu12]. Within Landau theory, a ↑ atom and a ↓ polaron
interact with a coupling constant gx given by

gx =
∂2E

∂n↑∂n↓
=
∂µ↑
∂n↓

. (8.24)

To second order in gx, the polaron-polaron interaction is then given by

E(2) = − g
2
x

V 3

∑
p↑,p↓,q

(1− fp↑+q)(1 + f
(b)
p↓−q)f

(b)
p↓ fp↑

(p↑+q)2

2m↑
+

(p↓−q)2

2m∗↓
− p2

↓
2m∗↓
− p2

↑
2m↑

, (8.25)

where f (b) indicates Bose functions since we are assuming a bosonic impurity. The
exchange contribution to Landau’s polaron-polaron interaction can be calculated from
this as

fx =
δ2E(2)

δf
(b)
p↓ δf

(b)
p↓−q

(8.26)

where both p↓ and q are vanishingly small. This gives

fx = −g
2

V

∑
p↑

fp↑ − fp↑+q

(p↑+q)2

2m↑
− p2

↑
2m↑−


q→0

= g2
xχ, (8.27)

where χ is the so-called Lindhard function. At zero temperature, χ equals simply the
density of states at the Fermi surface N =

∂n↑
∂µ↑

=
3n↑
2EF

. Collecting the above results, at
zero temperature we have

fx = −g2
xN = −

(
∂µ↑
∂n↓

)2 ∂n↑
∂µ↑

= −

−
(
∂µ↑
∂n↓

)
(
∂µ↑
∂n↑

)
2

∂µ↑
∂n↑

= −(∆N)2

N
. (8.28)

In the last step we used
(
∂x
∂y

)
z

(
∂y
∂z

)
x

(
∂z
∂x

)
y

= −1.

When the impurities are fermionic, an almost identical calculation leads to f (f)
x = −fx.

Physically, this comes from the Pauli repulsion between identical fermions or alterna-
tively, because the effective interaction involves the exchange of the impurities, which
leads to a sign change for fermions as compared to bosons [Mor10, Yu10, Yu12, Cam18a].
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The Landau interaction f between bosonic impurities is finally given by

f = −(∆N)2

N
+ g1. (8.29)

Note that the Landau polaron-polaron induced interaction (which is the first term in the
latter expression) is always attractive for bosonic impurities (and repulsive for fermionic
ones), irrespective of whether the impurity-bath interaction is attractive or repulsive.

Introducing the impurity concentration C = n↓/n↑, the increase of the energy of the gas
when adding one impurity is found to be

µ↓ =
∂E
∂n↓

= E↓ −
2

3
(∆N)2 C EF + g1n↓. (8.30)

In RF injection, we are gradually increasing the number of impurities, and therefore the
polaron-polaron interactions. Taking a simple average, one gets

µ̄↓ =
1

N↓

∫ N↓

0
µ↓(N

′
↓) dN

′
↓ = ∆E, (8.31)

where ∆E is the energy shift per impurity

∆E =
E − 3

5EFn↑

n↓
= E↓ −

1

3
(∆N)2 C EF +

g1n↓
2

. (8.32)
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Outlook

Many intriguing experiments have already been conducted in the FeLiKx laboratory and
many are yet to come. The measurements presented in this thesis opened up a variety
of new questions, which will eventually be tackled in the future. In this chapter I will
present some future perspectives of FeLiKx and in the course of this I will also propose
some technical extensions.

Near future projects

Our most recent measurements on the Fermi-Bose mixture, presented in Ch. 8, revealed
the behavior of the Fermi polaron as the impurity concentration approaches its limiting
values C → 0 (Fermi polaron) and C → ∞ (Bose polaron). The physical nature of
the underlying process that marks the transition between these two regimes is largely
unknown, due to the complexity of the system. Therefore the exploration of the inter-
mediate regime around C ≈ 1 could shed light onto the limits of Landau’s quasiparticle
theory. However, for the fact that the impurities are bosons the atoms will form a
BEC as a certain critical density is reached. We assume the interaction mechanisms of
a thermal cloud and a condensed cloud to be quite distinct and therefore we want to
strictly separate those two regimes. In our case, the bosons begin to form a BEC at a
concentration of C . 1. For this reason we can choose two different strategies to probe
the transition:

• The bottom-up approach: Within this method we generate a sample of atoms
with low impurity concentration and increase it until the critical impurity density
is reached. So far we could not access the desired regimes for technical reasons.
The instability of the magnetic field rendered an exact analysis impossible. How-
ever, in very recent experiments after completion of the work for this thesis we
resolved this issue and reached better resolution. A first dataset, taken under
improved conditions, looks promising and shows evidence for a steep decrease (be-
yond theoretical predictions) in the energy of the repulsive polaron as the impurity
density is increased.

• The top-down approach: In this scenario we start with a pure BEC that is
immersed into the Li Fermi sea and decrease the K density by applying incomplete
RF transfer. Our measurements presented in Fig. 8.9 of Ch. 8 show that as the
power of the RF pulse is changed, the resonance frequency, which represents the
energy of K in the final state, changes. If the initial state would be represented by
a pure BEC, rather than a partial BEC, we could apply an even shorter RF pulse
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and probe the transition between the full BEC transfer and a polaronic transfer.
Furthermore by varying the RF-pulse length we could, if three-body loss allows
for it, even potentially probe the timescale of the break down of the polaron due
to density-induced interactions.

These are possible near future projects. They are relatively easy to implement and the
current status of the machine could allow for these experiments to be conducted, until
technical changes (a change of the oven section) are unavoidable.

Technical upgrades of FeLiKx

In order to match the ever bigger growing demands of a state-of-the art experiment the
FeLiKx experiment should be upgraded in foreseeable time. Some technical changes are
necessary for the controlled operation and some hold great potential for future measure-
ments. Over the next years I suggest to implement:

• New oven section: As mentioned earlier, we suspect that our oven is clogged,
and at the moment we cannot locate the part of the oven from which we are loading
our atoms. This is a degree of control that we want to gain back. Therefore, right
now we are designing a new oven section without microtubes (see [Wil09]), which
will hopefully be operational by the end of this year.

• Microscope: Our imaging system covers a wide range of possibilities, but during
recent experiments we started to realize its limit. An insitu image of a BEC is
only approximately two pixels wide and possible density modulations in the Fermi
sea due to the bosons with a spatially small extension are hard/impossible to
observe. Therefore, we (more precisely: Emil Kirilov) designed a new microscope
that can be implemented into the experiment (theoretically) without any major
reconstruction [Ött19].

• Species-selective potential: A very advantageous tool that would open an-
other chapter of this experiment would be a species-selective optical potential for
our K atoms. Since Li represents the second species that shall not be perturbed by
the optical potential we would implement a new laser that is close in wavelength
to the K transition at 767 nm.

Other future projects

The chapter of Fermi polarons is not quite closed since many questions are yet to be
studied. The FeLiKx experiment presents an ideal platform to investigate these quasi-
particles and further upgrades enable us to gain more insight into various questions:

• Momentum dependence of the Fermi polaron: With the aid of a species-
selective potential, we could selectively excite K without influencing Li. This tool
enables us to vary the motional degree of freedom of the impurities and probe the
sensitivity of the polaron on the impurities momentum, which is so far unknown.
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• Limits of Quasiparticle theory: One major difference of using bosonic rather
than fermionic K is that if compressed, the 41K atoms will condense and form a
very dense degenerate sample of small spatial extent. Fermions, on the other hand,
are limited by Fermi pressure. By switching to the fermionic isotope 40K, we could
modify the impurity density without perturbing Li and achieve limits beyond of
what we can achieve now. In addition to that we could investigate the influence
of a degenerate sample of impurities (DFG) with respect to a thermal sample of
impurities.

• Infinite impurity mass: One nifty usage of a species-selective potential would
be a species-selective optical lattice. By splitting the laser light that creates the
optical potential, into two beams and superimposing them from opposite directions
we could pin down the K atoms and design a lattice of impurities with infinite
mass. This could lead to the first observation of the orthogonality catastrophe
(OC) [And67]. Admittedly, our mass imbalance is already quite large and right
now the limiting factor to not seeing the OC is probably our high temperature.
However, in the case of a repaired oven section and a resulting increase in the final
atomic number (by a significant amount), the elimination of the impurity recoil
could be the final step towards investigating the orthogonality catastrophe.

There are of course many more projects that can be realized with the FeLiKx machine,
however, there is only limited space to write them down. With this I want to finish this
chapter and wish the future FeLiKx teams all the best.
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