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Ich musste mich vergleichen einem Bergsteiger, der,
ohne den Weg zu kennen, langsam und mühselig hin-
aufklimmt, oft umkehren muss, weil er nicht weiter
kann, der bald durch Überlegung, bald durch Zufall
neue Wegspuren entdeckt, die ihn wieder ein Stück vor-
wärts leiten, und endlich, wenn er sein Ziel erreicht, zu
seiner Beschämung einen königlichen Weg findet, auf
dem er hätte herauffahren können, wenn er gescheidt
genug gewesen wäre, den richtigen Anfang zu finden.

— Hermann von Helmholtz [1]





A B S T R A C T

Ultracold gases with strong interactions have been studied to a great extent with
the help of Feshbach resonances, and have been used as precisely controllable
models for other systems that are not easily accessible experimentally. Fermionic
gases are especially interesting, because they can be used to simulate many-body
physics present in primordial matter, neutron stars, atomic nuclei or condensed
matter systems, particularly superconductors. Since interactions in cold fermions
are in general only present if the particles are not identical, most experiments have
been working with two spin states of a single atomic species. Changing the number
ratio of the two spins can lead to interesting new pairing phenomena, some of
which have been studied extensively in recent years. Mass-imbalanced systems
have been theoretically predicted to exhibit new exotic interaction regimes and
phases that go beyond the physics of spin mixtures.

This thesis reports on the efforts to realize a strongly interacting mass-imbalanced
Fermi-Fermi mixture of Dy and K that features collisional stability as well as
tunability of interaction strength and trapping geometry. Feshbach resonances have
become a ubiquitous tool to control the interaction strength in ultracold gases. With
the identification of a broad Feshbach resonance close to 217 G, we were able to
realize a resonantly interacting sample of Dy and K. A detailed characterization
of the resonance was conducted to extract relevant parameters. In the expanding
mixture, the resonant interspecies interaction causes a hydrodynamic behavior
which leads to a bimodal density profile. The influence of mass-imbalance and
other experimental parameters on the hydrodynamic expansion have been studied
with the help of a Monte Carlo simulation, and the results have been found to be
in good agreement with the experimental data. The simulation model has been
developed and characterized as part of this thesis and can serve as a model to gain
understanding of other interesting phenomena that might occur in our mixture,
e.g. inversion of the aspect ratio in the hydrodynamic expansion or the influence of
the R∗ parameter for closed-channel resonances.

In order to control the trapping potential of the constituents of our mixture we
developed two methods to accurately measure the Dy polarizability with the help
of K as a well-known reference species. The first method is based on measuring the
sloshing mode frequency in a standard red-detuned optical dipole trap at the typical
wavelength of 1064 nm. The second method employs modulation spectroscopy in
optical lattices to be able to measure the polarizability also on the blue-detuned
side of optical resonances. This has been used to characterize the Dy polarizability
around its 626-nm intercombination line, which will be useful for species-specific
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manipulation of atoms in the Dy-K mixture. In order to control the spatial properties
of the trapping potential, techniques involving digital micromirror devices have
been prepared and tested, resulting in highly uniform flat-top profiles that can be
used to study homogeneous systems, as well as profiles featuring linear intensity
gradients that would enable optical gravity compensation schemes.
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Part I

I N T R O D U C T I O N





1
O V E RV I E W

1.1 from "super".. .

In the beginning of the 20th century, the observations of two “super” phenomena
were posing new fundamental questions to physicists. In his experiments with
mercury in 1911, H.K. Onnes noticed that its electrical resistance would suddenly
vanish below a temperature of 4.2 K, allowing current to flow freely through the
material [2]. The discovery of what he later called “superconductivity” would earn
him the Nobel Prize in Physics in 1913. Although Onnes already used liquid helium
as a coolant, it would take until 1938, when a sudden change in the viscosity of
liquid helium-4 was observed at a critical temperature of Tc = 2.17 K [3, 4]. This
ability to flow without friction led to the term “superfluid”, in analogy to the
already studied superconductivity. But while the latter phenomenon was still not
understood well, superfluidity was quickly linked to Bose-Einstein condensation [5]
on the microscopic level. The Bose-Einstein condensate (BEC) is a prediction of the
Bose-Einstein statistics [6, 7], which describe how an ensemble of indistinguishable
particles with integer spin (bosons) occupy the available energy states in a system.
At low temperatures, they macroscopically populate the lowest energy state, be-
having like a big macro-particle. With the Fermi-Dirac statistics [8, 9], a similar
description exists for half-integer particles (fermions), which include also the elec-
trons in a metal such as mercury. However, as a direct consequence of the Pauli
exclusion principle, identical fermions do not occupy the same single-particle state,
preventing the condensation process. Instead, at zero temperature, the particles
will fill up all available energy states up to the Fermi energy EF.

It took another 20 years, until 1957, when Bardeen, Cooper and Schrieffer rec-
ognized that with attractive interactions between two electrons of opposite spin,
loosely bound pairs could be formed below a critical temperature. These composite
bosons, called Cooper pairs, were then allowed to condense, yielding a microscopic
description of superconductivity in the Bardeen-Cooper-Schrieffer (BCS) theory [10,
11]. Within this framework it was expected that also the fermionic helium-3 should
exhibit superfluidity at even lower temperatures as in its bosonic counterpart.
This was finally verified in 1972 after the observation of two phase transitions [12,
13], although in this case the underlying mechanism required a more elaborate
theoretical explanation [14].

Since then, the development of experiments and theoretical descriptions and
predictions went hand in hand. In particular, the role of interaction between two
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4 overview

particles was studied intensely. The strength of this interaction can be described by
the scattering length a. A negative value of a indicates attractive interaction, as in
the case of BCS pairing, while a is positive when the interaction is repulsive. It was
found that in the latter case, two fermions can enter bound dimer states, which are
bosonic and can consequently undergo condensation into a BEC. These two phases
are linked by the regime of strong interactions in between, and it was later found
that by changing a, it is possible to cross from one end of the spectrum to another
while the whole system stays superfluid. Interestingly, this happens without an
abrupt phase transition. This is nowadays known as the BEC-BCS crossover and
has been studied extensively throughout the years (see for example in Ref. [15]).

Part of the great interest in this field comes from the fact, that when a approaches
infinity, the system enters a universal regime. Here the properties of the system only
depend on its temperature and density, but the details of the interaction potential
drop out of the description. Examples of such systems are neutron stars [16, 17] or
the quark-gluon plasma [18–20] (a state of matter describing the universe shortly
after the big bang). However, such systems can often not be studied and controlled
directly, making the development and testing of new theories demanding, and thus
many open questions remain.

Additionally, since the first historic observations of superconductivity in mercury,
materials with far higher critical temperatures Tc have been identified. Recently,
with the synthesis of exotic materials, Tc even approached room-temperature,
however only in combination with pressures in the range of several hundreds of
GPa [21]. Naturally, materials with superconducting conditions at feasible tempera-
tures and pressures would find widespread applications in science and industry.
While the BCS theory can explain low-temperature Type I superconductivity, the
underlying mechanisms of Type II or high-Tc superconductors are still not un-
derstood. Experimentally, condensed matter systems are still hard to study on
a microscopic level, since the timescales of the underlying processes lie in the
range of attoseconds, a result of their high Fermi energies and densities. However,
nowadays, physicists try to push the boundaries of and gain insight in the field of
strongly interacting fermions by employing quantum simulators and conducting
experiments with ultracold atomic quantum gases. Ultracold gases have become
extremely controllable, and feature lower densities, therefore shifting the timescales
of the dynamics to the range of micro- to milliseconds, making them an ideal test
bed.

1.2 ...to "ultra"

Throughout the 20th century, with a deeper understanding of quantum phenomena,
science was advancing rapidly. With the development of the laser [22] and using
its light in techniques to trap and cool atoms [23–25] to temperatures of tens of
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nK, the field of ultracold atoms was born. Ultimately, this led to the realization of
conditions, where quantum effects occur, culminating in the first direct observations
of an atomic BEC. In 1995, two groups at JILA and MIT simultaneously succeeded
in condensing a gas of 87Rb and 27Na atoms [26, 27]. Owing to the fact that because
of the Pauli principle, thermalization in a low-temperature gas of fermions is
suppressed, the first degenerate Fermi gases (DFGs) were only observed 4 years
later. 40K was cooled to degeneracy by using two spin states by the group in
JILA [28], while another two years later the groups at Rice University and in Paris
used the bosonic 7Li to sympathetically cool 6Li [29, 30].

By now, with the development of additional experimental techniques, ultracold
atoms have become extremely controllable. This includes the ability to change the
temperature, particle number and density, trapping geometry and dimensionality,
and interaction strength, as well as techniques to bring the systems out of their
equilibrium state and study their response. As a result, a Bottom-Up approach is
possible, where simple systems are studied and then made more and more complex
to tackle not yet understood phenomena. In particular, the ability to control the
interaction strength of the system by the use of Feshbach resonances should be
highlighted [31, 32]. Around such resonances, by changing the magnetic field
strength B, the scattering length a can be precisely tuned, going from attractive to
repulsive and from weak to strong interactions.

Consequently, this was used extensively to study the effects of interaction on
various properties of thermal and condensed bosonic systems, as well as the
formation of molecules. However, attractive interactions can lead to an instability
of a BEC, leading to its collapse [33–35]. Additionally, when three atoms come
together, two of them can bind into a molecule with the help of the third, setting
free their molecular binding energy as kinetic energy, which can lead to loss and
heating of the gas. This has been studied extensively, and it has been shown that
the rate with which such collisions occur scales as a4 [36–38], and in the degenerate
regime is even enhanced by Bose statistics. This makes experiments with strongly
interacting bosons extremely difficult.

1.3 from balanced to imbalanced fermi-fermi mixtures

In contrast to bosons, because of the Pauli principle, fermions behave quite differ-
ently. On the one hand, identical fermions can not interact via s-wave collisions.
This means that for gases at low temperatures, where other partial wave contri-
butions vanish, originally two spin states had to be used to have an interacting
sample. On the other hand, this also leads to increased stability against three-body
loss [39–42]. This opened up the ability to reach strong interactions [43] between
the two spin states and study the BEC-BCS crossover in great depth.



6 overview

After the first experiments observed the formation of Feshbach molecules from
fermionic atoms [40, 41, 44, 45], several groups succeeded in the realization of a
molecular Bose-Einstein condensate (mBEC) almost simultaneously [46–48]. Soon
after, condensation of fermionic pairs was also observed on resonance and in the
BCS side [49]. The superfluidity at the crossover was then studied extensively
through collective modes [50, 51] and hydrodynamic behavior [52], although the
direct observation of superfluidity only came with the observation of vortices [53].
Furthermore, the pairing gap as a distinctive feature of Fermi pairing was measured
with radio-frequency spectroscopy [54].

In the center of Feshbach resonances, where the scattering length diverges, the
gas enters the unitarity limit. In this so-called universal regime, the interparticle
distance becomes the only relevant length scale remaining [55]. The interparticle
interaction then does not depend on the microscopic details of the interaction
potential anymore. Hence, insights from highly controllable ultracold atom experi-
ments can be applied to other inaccessible universal systems like neutron stars or
the quark gluon plasma [20]. Unsurprisingly, many experiments focused on the
thermodynamic properties of the universal Fermi gas [56–58]. Another interesting
aspect was the characterization of the temperature dependence of first sound [59,
60] and the observation of second sound [61].

Originally, early experiments with spin mixtures were carried out with roughly
equal atom numbers in both states. However, possible pairing mechanisms in the
case of mismatched Fermi surfaces were also discussed, for example for super-
conductors in strong external fields. In this case, the external field couples to the
spin of the electrons, resulting in separated Fermi surfaces of the two opposite
spins. Furthermore, in the core of neutron stars, high-density quark mixtures are
proposed to be present. Here, a mismatch between the Fermi surfaces of quark
flavors can appear as a result of their different masses and charges, and can lead to
color-superconductivity, which was proposed to have relevance to astrophysics [19].
However, such systems remain difficult to study directly.

Therefore, the next logical and experimentally easy to implement step was to
change the atom number ratio (or polarization P of the system) and study its
effect on the pairing mechanism and phase diagram of the mixture. In the opposite
extreme to the equal-numbered case, a single species Fermi gas, no pairing is
possible. The absence of interactions because of Pauli blocking leads to the textbook
example of an ideal gas. But after adding just a few atoms of a second species, this
minority component acts as an impurity. With attractive interactions, a quasiparticle
is formed with nearby majority component atoms, forming the Fermi polaron [62].
Together with its bosonic counterpart [63], the polaron and its properties were
studied extensively [64].

The question arises, how and when superfluidity occurs between these two
regimes. In the case of equal spin numbers, Cooper pairs form between atoms
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Figure 1.1: Phase diagrams of imbalanced Fermi gases as a function of polarization P and
temperature T. (a) and (b) show the equal mass case at strong (1/kFa = 0) and
weakly attractive interactions (1/kFa = −3), respectively. (c) shows the phase
diagram for a mass ratio of 6.7 in the strongly interacting limit. N normal state,
SF superfluid state, FR forbidden region, SS supersolid, TCP tricritical point, LP
Lifshits point. Figure adapted from Ref. [70].

from the two opposing sides of the Fermi surface of the two spin states, where the
addition of their equal but oppositely directed momentum results in a pair of zero
net momentum. Generally, all atoms can pair up, resulting in the creation of a su-
perfluid throughout the whole sample. However, with unequal atom numbers, this
is not the case anymore, resulting in a transition to the normal state for increasing
polarization [65], or in the formation of a superfluid core surrounded by a normal
Fermi gas [66, 67]. The theoretical calculated phase diagram of such a spin mixture
at strong interactions can be seen in Fig. 1.1(a), where the temperature was rescaled
by the Fermi temperature TF = EF/kb. Here, a tricritical point occurs where the
superfluid, phase separated (refered to as forbidden region FR) and normal phases
meet. Extensive theoretical studies on the phase diagram for different interaction
regimes show that they can be substantially modified, with the occurrence of new,
exotic phases. For example, for larger polarization, where the Fermi surfaces are
mismatched, pairing between atoms of unequal momenta can be favorable. This
results in pairs with non-zero total momentum and an inhomogeneous superfluid
order parameter, as has been shown independently by Fulde and Ferrell (FF) [68],
and Larkin and Ovchinnikov (LO) [69], who considered the aforementioned case
of superconductors in extrenal magnetic fields. As the LO state features a mod-
ulated density, it is also associated with a supersolid state. Fig. 1.1(b) shows a
spin mixture at weakly attractive interactions, where the formation of a super-
solid phase accompanied by a Lifshits point was predicted [70]. However, as the
Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) states are believed to appear only in a
very small phase space region [71], and the required extremely low temperatures
are hard to reach in experiments, it is still elusive experimentally.1

1 Experiments with exotic organic superconductors using nuclear magnetic resonance measure-
ments [72] and measurements of their heat capacity [73] have found indicators of the FFLO state,
however a direct microscopic confirmation is missing.
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As a second possibility to introduce imbalance to a mixture, a second atomic
species with a different mass can be used. In such a mass-imbalanced case, the T − P
phase diagram is modified even more, as is shown in 1.1(c). It is not symmetric with
respect to the polarization anymore, and the supersolid phase is only found at a
majority of light particles. Remarkably, the temperature associated to the supersolid
phase and Lifshits point is now about two orders of magnitude higher, which puts
it at conditions realistic to reach with current ultracold atom experiments [74].

As another striking effect, the interaction between particles can be substantially
modified by the mass-imbalance. While for identical fermions at low temperatures
the p-wave centrifugal barrier prevents the three-body recombination to dimers
and subsequent loss of particles, at a mass ratio from 13.6 and higher, this barrier
no longer exists, at resonance leading to an occurrence of an infinite number of
bound trimer states under the Efimov effect [75]. A second, different, p-wave trimer
state is present for a mass ratio of 8.2 onward for strong repulsive interactions.

With the combination of the two originally degenerate species Li and K, a first
system was available to try to study the effects of mass imbalance [76–78]. The
hydrodynamic expansion of the strongly interacting mixture could be observed [79],
as well as the effect of the mass ratio on three-body interactions [80]. However,
because of the narrow nature of the Feshbach resonances in this system, no strong
loss suppression is present [81]. Additionally, there is also a two-body inelastic
decay process [82]. The resulting limited lifetime is a major complication for the
investigation of ground-state properties of this mass-imbalanced mixture.

1.4 the dy-k experiment

In recent years, additionally to the relatively simple alkali species Li and K, several
other fermionic species have been brought to degeneracy, including Cr [83], Sr [84]
and Yb [85]. In the tradition of transitioning to more complicated systems, focus was
also laid on the lanthanides Er [86] and Dy [87]. Their complex electronic structure,
featuring a partially filled, submerged 4 f shell and consequently a high magnetic
moment of 9 and 10µb, respectively, gives rise to several interesting aspects. Most
notably, they exhibit long-range anisotropic dipole-dipole interactions, which can
be used as an additional control parameter. The effect of the long-range nature of
the interaction is that all partial waves participate and contribute to the scattering
process, even at low temperatures [88]. As a consequence, a single-species polarized
dipolar Fermi gas still exhibits interaction at low temperatures [89], nevertheless
making it possible to reach degeneracy [86, 90]. Another striking feature, originating
from the anisotropic nature of their interactions, is that Er and Dy exhibit extremely
dense Feshbach spectra [91, 92]. However, combined also with the high magnetic
moment, this demands a high level of control and accuracy on the magnetic field.
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Aside from its effect on the interaction properties, the complicated electronic
structure also results in a dense spectrum of optical transitions, featuring both
broad and narrow closed transitions at wavelengths accessible with current laser
technology [93–96]. These have, for example, been used to reach sub-µK tem-
peratures already before evaporative cooling, enabling a rapid BEC and DFG
production. With the wide field of new phenomena and experimental techniques
the lanthanides offer, they have recently found a lot of interest in the cold atom
community. Most notably are perhaps the pursuit and observation of self-bound
quantum droplets and ultimately the supersolid phase [97–99].

Within the need for a new strongly interacting mass-imbalanced Fermi-Fermi
mixture, the combination of Dy and K stands as a good candidate. The mass ratio
of about 4 is expected to result in a reasonable effect on the interaction properties,
while at the same time staying away from the lossy trimer states occurring at higher
ratios. It is expected that the mixture exhibits a sufficient suppression of inelastic
decay [81].

Although the dense Feshbach spectrum of Dy increases the difficulty in terms of
magnetic field control, the reasonable assumption is that this will result in usable
interspecies Feshbach resonances at moderate field strengths [100], as opposed
to mixtures with closed-shell atoms like Sr [101] and Yb [102, 103]. Furthermore,
dysprosium’s efficient cooling strategies offer an advantage as compared to Cr and
the challenges imposed by its level structure [104]. In comparison to the very similar
Er, Dy stands out because of its two fermionic isotopes, doubling the chances of
realizing a strongly interacting mixture.





2
C O N T E N T S O F T H I S T H E S I S

This thesis has been realized in the Innsbruck Dy-K experiment and was started
shortly after the move-in into a new lab. I was therefore present in the early stages
of the experiment, facing mostly technical challenges. As we have seen in the brief
history of ultracold gases, two main ingredients for a successful experiment are
the ability to control the system and to have methods to gain understanding of the
measured data. My work is therefore divided into two directions.

Part II of this thesis is centered around our initial effort to realize a resonantly in-
teracting Fermi gas. Chapter 3 serves as a short introduction to interactions in a gas
and how these interactions can be controlled with the use of Feshbach resonances.
As a first step in the experiment, we developed techniques to produce deeply
degenerate Fermi mixtures of Dy and K, the details of which are described in our
publication in Ref. [105]. Building on these results, we identified a set of Feshbach
resonances close to 217 gauss, which lead to the creation of a resonantly interacting
Fermi-Fermi mixture of Dy and K. Our findings are reported in Chapter 4. As one
of the techniques to identify the center of the resonances, we used hydrodynamic
expansion of the two clouds. To understand the experimental data, we developed
a Monte Carlo simulation to solve the Boltzmann equation. The details of this
simulation are summarized in Chapter 5.

Part III focuses on the aspect of controlling the system by shaping the properties
of the optical trapping potential. In Chapter 6 I will introduce the atomic polariz-
ability as the quantity that describes the response of an atom in an off-resonant
light field, and I will motivate why the realization of a flat trapping potential
is interesting for our experiment and in general for the hunt for exotic phases.
Since the atomic polarizability strongly depends on the wavelength of the trapping
light, we measured the response of dysprosium to the light at wavelengths close to
1064 nm and around 626 nm. The results of these measurements are reported in
Chapters 7 and 8. Chapter 9 focuses on the experimental techniques used to shape
arbitrary potentials with a spatial light modulator.

The thesis is then concluded in Part IV with a summary on the work that has
been carried out during my time as a PhD student, and an outlook of what is next
for the Dy-K experiment.

11





Part II

I N T E R A C T I O N S I N T H E D Y- K M I X T U R E

AI interpretation of simulations of colliding gas particles, created by Stable Diffusion [106].





3
S C AT T E R I N G A N D F E S H B A C H R E S O N A N C E S I N Q UA N T U M
G A S E S

Interactions and scattering in ensembles of particles are an important aspect of cur-
rent scientific research. This is especially pronounced in fermionic systems, where
interactions enable the formation of superfluids, the basis of many interesting phys-
ical phenomena, e.g. superconductivity. In the field of ultracold atoms, Feshbach
resonances can be used to control interactions, which, among other techniques,
enable the systematic study of superfluidity and other related phenomena. In this
chapter I will only shortly touch on the wide subject of interactions to give a brief
introduction to the basic concepts appearing and used in this part of the thesis. For
a more extensive discussion, I refer to the References [32, 107, 108].

In general, in a dilute ultracold atomic gas, two-body collisions dominate over
other interaction processes with more constituents, because the limited density
leads to a suppression of the probability of three or more particles coming close
to each other. At large distances r between two atoms, the interaction potential
is dominated by the attractive van der Waals potential, which is approximately
proportional to −1/r6, whereas at short distances on the order of the Bohr radius a0

the repulsive interaction of the two electron clouds leads to a hard-core repulsion.
The formal treatment of atoms moving in this interaction potential is very tedious
and complicated in the case of a gas with high atom numbers. However, in an
ultracold gas, the de Broglie wavelength of the atoms is large, on the order of
10000 a0, meaning that the atoms often do not explore the fine details of the
interaction potential. Under this assumption, the potential can be described by
another potential that is easy to solve to understand the scattering process, for
example a spherical well potential.

3.1 basic scattering theory

In scattering theory, the system of two colliding particles is usually described as a
single particle of energy E, reduced mass µ and relative wavevector k in the relative
coordinate system with potential V(r). The magnitude of the wavevector is given

by k =
√

2µE/h̄2. In the asymptotic cases, the particle enters as a plane wave eikr

and leaves the process in a superposition of the incident wave and an outgoing
scattered, spherical wave

Ψ(r) → eik·r + f
(
k′, k

) eikr

r
. (3.1)
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Here, f
(
k′, k

)
is called the scattering amplitude and describes scattering from

an incident wave with k into direction k′. Assuming a central potential, we can
employ a partial wave expansion of the wave function with respect to the angular
momentum l. In the limit of ultracold gases, the collision energies are so small that
s-wave interactions (l = 0) dominate over all other partial wave contributions. Then

f ≈ fs =
1

k cot δs − ik
, (3.2)

which means that the outgoing wave gets a phase shift δs. For low momenta we
use the expansion

k cot δs ≈ −1
a
+ reff

k2

2
, (3.3)

where we define the effective range reff of the potential and the (s-wave) scattering
length

a = lim
k→0

tan δs

k
. (3.4)

With this we can rewrite

f (k) =
1

− 1
a +

1
2 reffk2 − ik

(3.5)

and finally arrive at the scattering cross section for s-wave collisions

σ = 4π | f (k)|2 =
4π( 1

a −
1
2 reffk2

)2
+ k2

. (3.6)

Let’s now discuss the behavior of σ in some special cases. In general, reff depends
on the details of the interaction potential. However, in ultracold gases the de Broglie
wavelength 2π/k is often much bigger than the effective range, 1/k ≫ |reff|, which
means that the atoms do not sample the fine details of the potential. In this case,
simpler pseudo potentials can be used to describe the scattering process, and the
cross section reduces to the universal form

σ =
4πa2

1 + a2k2 . (3.7)

For very low momenta |ka| ≪ 1, the scattering length is enough to describe the
scattering process, with the corresponding low-energy cross section

σ = 4πa2. (3.8)

In the opposing limit |ka| ≫ 1, the cross section is momentum limited and reduces
to

σ =
4π

k2 . (3.9)

In this so-called unitarity limit, the scattering length drops out of the description of
the scattering process. The interaction is then entirely governed by k and universal
for many different physical systems, which makes this regime very interesting to
explore in highly controllable ultracold atom experiments.
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3.2 feshbach resonances

The scattering length a and the effective range depend on the nature and details of
the interaction potential. However, it turns out that a shows a resonance behavior
whenever the energy of the two free particles is close to the energy of a bound
state in another potential. This is also the underlying principle of the Feshbach
resonances, which provide an important tool to control the scattering length in cold
atom experiments. Again, for an in-depth discussion of the mechanisms behind
Feshbach resonances the reader is referred to Refs. [32, 107].

In the description of the Feshbach mechanism, the coupled two-channel picture is
often used. Two free atoms at a large distance in their interaction potential are said
to be in the open (or entrance) channel. However, other (closed) channels exist that
differ in their electron configuration and therefore their energy, and can support a
bound state. Since the different channels have different magnetic moments, their
energy difference depends on the magnetic field strength B. Thus, by changing
B, open and closed channel can be shifted in their relative energy, such that the
energy of the free atoms is close to the energy of the bound state in the closed
channel. In this scenario, the scattering length shows a resonance behavior which
can be described by

a(B) = abg

(
1 − δ

B − B0

)
. (3.10)

The background scattering length abg summarizes the effect of off-resonant scatter-
ing processes, as well as contributions from other nearby Feshbach resonances, and
depends on the interaction potential. B0 indicates the resonance center, where the
scattering length diverges. The resonance width δ depends on abg and determines
the position of a zero-crossing of the scattering length at B = B0 + δ.

Close to the resonance, the incoming scattering state couples to the bound
molecular state of the closed channel, and the scattering state becomes a dressed
state, consisting of contributions from both channels. In the case of an open-channel
dominated resonance, the closed channel can be eliminated by assuming a single
channel model with an attractive spherical well potential. In this simple description,
the three parameters abg, δ and B0 are enough to fully characterize the Feshbach
resonance. The universal regime can then be accessed if |ka| ≫ 1 and we can use
Eq. (3.9) to compute the scattering cross section. Furthermore, for a > 0 the atoms
enter the molecular state whose binding energy in the universal range is given by
Eb = − h̄2

2µa2 .
However, in some cases the resonance is dominated by the closed channel and

the single channel model is not enough to describe the scattering process. In this
case, another, fourth parameter R∗ = −reff/2 has to be introduced [109], and the
cross section takes the form of Eq. (3.6). However, even for narrow resonances the
universal regime can be recovered for |a| ≫ R∗.
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Feshbach resonances have become an invaluable tool for experimentalists, be-
cause they allow to accurately control the interaction of the atoms and thus access
different physical phenomena. Especially the universal regime offers the possibility
to study other physical systems with the well-developed tools of ultracold atom
experiments. Therefore, one of the first steps in experiments with new species is to
search for suitable Feshbach resonances, if possible "broad" (i. e. entrance-channel
dominated) ones. Chapter 4 features a publication where we investigated a Dy-K
resonance close to 217 G. In the characterization of this resonance, we used methods
that rely on the hydrodynamic expansion and thermalization of the two species,
two phenomena that depend on the scattering cross section. To understand the
experimental data, we developed a Monte Carlo simulation that numerically solves
the Boltzmann equation and allows to make some predictions for the experiment.
The details of this simulation are described in Chapter 5.
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We report on the realization of a Fermi-Fermi mixture of
ultracold atoms that combines mass imbalance, tunability,
and collisional stability. In an optically trapped sample of
161Dy and 40K, we identify a broad Feshbach resonance
centered at a magnetic field of 217 G. Hydrodynamic ex-
pansion profiles in the resonant interaction regime reveal a
bimodal behavior resulting from mass imbalance. Lifetime
studies on resonance show a suppression of inelastic few-
body processes by orders of magnitude, which we interpret
as a consequence of the fermionic nature of our system.
The resonant mixture opens up intriguing perspectives for
studies on novel states of strongly correlated fermions with
mass imbalance.

4.1 introduction

Ultracold Fermi gases with resonant interactions have attracted a great deal of atten-
tion as precisely controllable model systems for quantum many-body physics [15,
110–112]. The interest spans across many different fields, from primordial matter,
neutron stars and atomic nuclei to condensed-matter systems, and in particular
concerning superfluids and superconductors [113]. Corresponding experiments in
ultracold Fermi gases require strong s-wave interactions, which can be realized
based on Feshbach resonances [32] in two-component systems. The vast majority of
experiments in this field relies on spin mixtures of fermionic atomic species, which
naturally imposes equal masses. Beyond this well-established situation, theoretical
work has predicted fermionic systems with mass imbalance to favor exotic interac-
tion regimes [114]. Mass-imbalanced systems hold particular promise [74, 115] in
view of superfluid states with unconventional pairing mechanisms, most notably
the elusive FFLO state [68, 69, 116].

A key factor for experiments on resonantly interacting Fermi gases is the colli-
sional stability that arises from a suppression of inelastic loss processes at large
scattering lengths. This effect is a result of Pauli exclusion in few-body processes
at ultralow energies [42, 117]. To act efficiently in an experiment, the suppression
requires a broad s-wave Feshbach resonance with a sufficiently large universal
range [75, 117]. For the mass-balanced case, suitable resonances exist in spin mix-
tures of 6Li or 40K, and such systems are used in many laboratories worldwide. In a
mass-imbalanced fermion system, the same suppression effect can be expected [118].
However, the only s-wave tunable Fermi-Fermi system realized so far is the mixture
of 6Li and 40K [79, 80], for which the Feshbach resonances [77, 82, 119] are too
narrow to enable strong loss suppression [81].
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Figure 4.1: Interspecies scattering length a for 161Dy-40K near the broad Feshbach resonance
centered at B0 ≈ 217 G. The shaded region indicates the regime where a exceeds
all other relevant length scales (see text).

The advent of submerged-shell lanthanide atoms in the field of ultracold quantum
gases [86, 87, 120, 121] has considerably enhanced the experimental possibilities.
While most of the current work focuses on interactions that result from the large
magnetic dipole moment or the complex optical transition structure, the availability
of additional fermionic atoms is of great interest in view of novel ultracold mixtures
and strongly interacting systems [122, 123]. We have recently introduced the mixture
of 161Dy and 40K [105, 124] as a candidate for realizing a collisionally stable,
strongly interacting Fermi-Fermi mixture. Many narrow Feshbach resonances can
be expected for such a system as a result of anisotropic interatomic interactions [100,
125]. However, the key question in view of future experiments has remained,
whether suitable broad resonances would exist.

In this Letter, we report on a broad Feshbach resonance in the 161Dy-40K mixture
with its center found near 217 G. We have identified this resonance (see Fig. 4.1)
as the strongest one in a scenario of three overlapping resonances (Sec. 4.7), with
the other two at 200 G and 253 G. Some weak (only few mG wide) interspecies
resonances do also exist in the relevant region, but they can be ignored for un-
derstanding the general structure of the broad scenario. We have characterized
the three resonances by interspecies thermalization measurements, as reported in
detail in Sec. 4.7. Close to the center of the strongest resonance, the tunability of
the interspecies s-wave scattering length can be well approximated by

a = − A
B − B0

a0 , (4.1)

where a0 is Bohr’s radius. Our best knowledge of the pole position and the strength
parameter is B0 = 217.27(15)G and A = 1450(230)G, see Sec. 4.7.



22 publication : resonantly interacting fermi-fermi mixture

4.2 sample preparation

The starting point of our experiments is a degenerate mixture of 161Dy and 40K, pre-
pared in a crossed-beam optical dipole trap according to the procedures described
in our earlier work [105]. Evaporative cooling is performed at a low magnetic
field of 225 mG. Both species are in their lowest hyperfine and Zeeman substates,
which excludes two-body losses. The transfer of the system into the high-field
region above 200 G is challenging, because many Dy intraspecies [91, 126] and
Dy-K interspecies resonances have to be crossed in a fast ramp of the magnetic
field. To minimize unwanted losses, heating, and excitations of the trapped cloud
we proceed in two steps. Within a few ms, we ramp up the magnetic bias field to
219.6 G1, where the system is given a time of a few 10 ms to settle and establish
thermal equilibrium. We then apply a very fast (2-ms) small-amplitude ramp to
the target field, where the experiments are carried out. Throughout the whole
sequence after evaporation, a magnetic levitation field is applied to compensate
for the relative gravitational sag of both species [105]. In this way, we reach typical
conditions of NDy = 20 000 and NK = 8 000 atoms at a temperature of T = 500 nK2

in a slightly elongated trap (aspect ratio ∼2) with mean oscillation frequencies of
ω̄Dy/2π = 120 Hz and ω̄K/2π = 430 Hz3 and depths corresponding to 3.5 µK and
10 µK, respectively. With Fermi temperatures of TDy

F = 290 nK and TK
F = 750 nK, our

experimental conditions are near-degenerate of (T/TDy
F = 1.7 and T/TK

F = 0.65).

4.3 interaction characterization

Interaction regimes near resonance can be discussed by comparing the scattering
length with other relevant length scales. To characterize the interaction strength
on resonance, where scattering is limited by unitarity [127, 128], we define a
length scale corresponding to the inverse wave number of the relative motion
1/k̄rel = h̄/(mrv̄rel), where v̄rel =

√
8kBT/(πmr) is the mean relative velocity and

mr denotes the reduced mass. The typical interparticle distance sets another length
scale, for which we adopt a common definition for two-component Fermi gases,
d = (3π2ntot)−1/3, where ntot is the total number density of both species in the
trap center. For our typical experimental parameters, we obtain 1/k̄rel ≈ 2100 a0

and d ≈ 2500 a0. The scattering length exceeds 1/k̄rel in a magnetic field range of
roughly ±0.7 G. In this resonant interaction regime, scattering is dominated by the

1 At 219.6 G interspecies thermalization is sufficiently fast and Dy background losses show a pro-
nounced minimum.

2 Thermometry is based on time-of-flight images taken at high magnetic fields in regions where
interspecies interactions are weak.

3 The ratio of the trap frequencies for K and Dy is essentially determined by the mass ratio and the
polarizability ratio, which results in a ω̄K/ω̄Dy = 3.60 [124].
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Figure 4.2: Comparison of the expansion of the mixture for weak (upper) and resonant
(lower) interspecies interaction. The absorption images show the optical depth
for both species (Dy left, K right) after a time of flight of 4.5 ms. The field of
view of all images is 240 µm × 240 µm.

unitarity limitation. In addition to that, the values of 1/k̄rel and d are similar, which
means that the system is in the crossover between weak and strong interactions.
A further length scale is set by the effective range of the resonance [32]. Its value
is presently unknown because of the yet undetermined magnetic moment of the
molecular state underlying the resonance, but we expect the effective range (Sec. 4.7)
to be rather small in comparison to realistic values of the scattering length and the
interparticle spacing, so that the interaction physics will be dominated by universal
behavior.

4.4 hydrodynamic expansion

A striking effect of the resonant interspecies interaction shows up in the expansion
of the mixture. In the experiments, the sample was released from the trap right after
switching to the target field strength. The absorption images in the upper row of
Fig. 4.2 illustrate the case of weak interactions (a ≈ −40 a0), realized at B = 235.4 G.
Here the expansion takes place in a ballistic way and, as expected from the mass
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Figure 4.3: Profiles of the hydrodynamically expanding mixture for resonant interaction, (a)
experimentally observed and (b) from a corresponding Monte-Carlo simulation.
Shown are the probability densities of doubly-integrated profiles for both Dy
(solid blue lines) and K (red curve with filling).

ratio, the K component expands much faster than the Dy component. In contrast,
in the resonant case (images in the lower row of Fig. 4.2) both components expand
with similar sizes. Evidently, the interaction between the two species slows down
the expansion of the lighter species and accelerates the expansion of the heavier
species. Such a behavior requires many elastic collisions 4 on the timescale of the
expansion and thus can be interpreted as a hallmark of hydrodynamic behavior.

A closer inspection of the spatial profiles of the hydrodynamically expanding
mixture reveals an interesting difference between the heavy and the light species;
see profiles in Fig. 4.3. While the Dy cloud essentially keeps its near-Gaussian shape,
the K cloud (initially about twice smaller than the Dy cloud) develops pronounced
side wings. Apparently, the mixture forms a hydrodynamic core surrounded by a
larger cloud of ballistically expanding lighter atoms.

To elucidate the origin of this surprising effect we have carried out a Monte-Carlo
simulation [129], accounting for the classical motion and the quantum-mechanically
resonant collisional cross section, which is only limited by the finite relative momen-
tum of a colliding pair [127, 128]. For our near-degenerate conditions, we neglect
Pauli blocking and interactions beyond two-body collisions. The simulation results
in Fig. 4.3(b) reproduce the experimental profiles (a) without any free parameter.

4 We estimate the collision rate for a K atom in the center of the Dy cloud by considering the resonant
elastic scattering cross section σres = 4π/k̄2

rel, the Dy peak number density n̂Dy, and the mean relative
velocity v̄rel. For our typical conditions, n̂Dyσresv̄rel ≈ 104 s−1.
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Figure 4.4: Enhancement of the central fraction of K atoms in the expanding mixture.
Experimental results for the resonance behavior (filled black symbols) are
shown in comparison with Monte-Carlo simulation results (red open symbols).

The simulation confirms our interpretation in terms of a hydrodynamic core, where
both species collide with each other at a large rate, surrounded by a ballistically
expanding cloud of light atoms. The physical mechanism for the formation of the
latter is the faster diffusion of lighter atoms, which can leak out of the core and, in
the absence of the other species, begin to move ballistically. We point out that this
bimodality effect is not an experimental imperfection, but a generic feature in the
hydrodynamic expansion of a mass-imbalanced mixture.

To investigate the dependence of the hydrodynamic expansion on the scattering
length, we recorded two-dimensional expansion profiles (such as in Fig. 4.2) for
various values of B in a 2-G wide range around the resonance center. We focus
our analysis on the K profiles as they reveal the hydrodynamic core, while the Dy
profiles only show a slight increase in width. As a quantitative measure we define
the “central fraction” as the fraction of K atoms in a circle of particular radius. For
the latter we use the

√
2σ-width of the non-interacting Dy cloud (∼ 34 µm at a

4.5-ms time of flight). We find a marked increase of the central fraction from its
non-interacting background value 0.22 to a resonant peak value of about 0.40. As a
function of the magnetic detuning B − B0, the central fraction shows a pronounced
resonance behavior, which closely resembles a Lorentzian curve. From a fit we
derive the center B0 = 217.04G and a width (half width at half maximum) of 0.37 G.
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We finally use Eq. (4.1) with the fixed value A = 1450 G to convert the magnetic
detuning scale into an inverse scattering length and plot the data as shown in
Fig. 4.4.

For comparison, we have also employed our Monte-Carlo approach to calculate
the central fraction as a function of the scattering length. Figure 4.4 shows the simu-
lation results (red open symbols) together with the experimental data (black closed
symbols). We find that the simulation reproduces the experimental observations
very well. This agreement between experiment and theory strongly supports our
qualitative and quantitative understanding of both the resonance scenario and the
expansion dynamics.

For a precise determination of the resonance center, measurements based on
the hydrodynamic expansion can in general provide much sharper resonance fea-
tures than simple thermalization [130]. While our expansion measurement yielded
217.04(1)G for the resonance center B0, the thermalization measurement (Sec. 4.7)
resulted in a value of 217.27(15)G, somewhat higher and with a statistical uncer-
tainty more than an order of magnitude larger. Whether the apparent deviation is
a pure statistical effect (about 1.5 σ), whether it is caused by magnetic-field control
issues 5, or whether there are unknown systematic effects behind it requires further
investigation. We note that anisotropic expansion effects in our nearly spherical
trap remain very weak and are barely observable. The anisotropic expansion of a
hydrodynamic, strongly interacting Fermi-Fermi system has been studied in our
earlier work on a resonant 6Li-40K mixture [79].

4.5 lifetime

We now turn our attention to the lifetime of the mixture in the resonance region. In
general, we find the magnetic-field dependence of losses to exhibit a very complex
behavior, see Sec. 4.7. Both Dy-K interspecies and Dy intraspecies losses show
strong fluctuations with a variation of the magnetic field. A broad loss feature
appears about 0.5 G below the 217-G resonance, where the scattering length is
very large and positive. This feature closely resembles observations made in spin
mixtures of 6Li [39, 131, 132] and 40K [130], which have been understood as a
signature of the formation of weakly bound dimers. In addition to this broad
feature, additional narrower structures appear, which make the experiment very
sensitive to the particular choice of the magnetic field. Nevertheless, several good
regions exist close to the center of the broad Feshbach resonance under conditions,
where losses are relatively weak and s-wave scattering is deep in the unitarity-
limited regime.

5 Day-to-day fluctuations, drifts in the calibration, and residual ramping effects may cause magnetic-
field uncertainties of the order of 100 mG.
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Figure 4.5: Decay of the resonant Dy-K mixture (a) in comparison with a pure Dy sample
(b) at magnetic field B = 217.5 G, very close to the resonance pole. The solid
lines show fits by a phenomenological model, see Sec. 4.7.

As an example for long lifetimes attainable in the resonance region, Figure 4.5
shows a set of measurements taken at field strength of 217.5 G, for which we
estimate a large negative scattering length of −3000 a0 or even larger. We have fitted
and analyzed the decay of the atom numbers following the procedures detailed in
Sec. 4.7. For the number of K atoms, our data show an initial time constant of about
350 ms. If we attribute this decay completely to K-Dy-Dy (K-K-Dy) three-body
processes, we obtain the upper limits of 4 × 10−25 cm6/s (3 × 10−25 cm6/s) for the
event rate coefficients. These values are very small compared with other resonant
three-body systems that do not involve identical fermions. In Feshbach-resonant
Bose-Bose [133–135] or Bose-Fermi mixtures [136–140], event rate coefficients have
been measured exceeding 10−23 cm6/s, i.e. at least two orders of magnitude more.
In preliminary experiments [141] on Bose-Fermi mixtures of Dy-K (bosonic isotope
162Dy), we have also observed a dramatic increase of resonant three-body losses by
orders of magnitude. We attribute the low values of the three-body rate coefficients
and thus the long lifetimes in our Fermi-Fermi system to the Pauli suppression of
inelastic losses [42, 117, 118].

The decay of the Dy component in the mixture, displayed in Fig. 4.5(a) by
the blue data points and the corresponding fit curve, shows a peculiar behavior.
Since we find that about 10 times more Dy atoms are lost as compared to K
atoms, three-body interspecies collisions may only explain a small fraction of Dy
losses. As Figure 4.5(b) shows, Dy alone exhibits losses even without K being
present, but much weaker. Interpreting these losses as Dy intraspecies losses,
gives values for the event rate coefficient of 3.4 × 10−25 cm6/s in the presence of
K, but only 0.8 × 10−25 cm6/s without K (Sec. 4.7). These observations point to
an unknown mechanism, in which K atoms somehow catalyze the decay of Dy
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without directly participating in the loss processes. A possible mechanism may
be due to elastic collisions with K atoms causing residual evaporation. We tested
this in our experiments by recompressing the trap, but did not observe significant
changes in the observed loss behavior. Another hypothesis is based on a spatial
contraction (density increase) of the Dy cloud caused by strong interaction effects
with K atoms. Considering the zero-temperature limit, we have developed a model
(Sec. 4.7) for such an effect, but its applicability is questionable at the temperatures
of our present experiments. The explanation of the mysterious enhancement of Dy
losses induced by K remains a task for future experiments.

4.6 discussion and conclusion

Already our present experiments, carried out near quantum degeneracy (T/TK
F ≈

0.65), demonstrate that mass imbalance can make a qualitative difference in the
physical behavior of a strongly interacting fermion mixture. The bimodality ob-
served in the hydrodynamic expansion profile of the lighter component is seemingly
similar to observations in population-imbalanced spin mixtures near the super-
fluid phase transition [142]. However, while in the latter case bimodality signals
superfluidity, the reason is a different one in our case. Detailed understanding
of the expansion dynamics of a Fermi-Fermi mixture in different classical and
quantum regimes is thus essential for interpreting the expansion profiles in future
work aiming at superfluid regimes. For reaching lower temperatures and deeper
degeneracy, work is in progress to eliminate heating in the transfer from low to
high magnetic fields and to implement an additional evaporative cooling stage that
takes advantage of the large elastic scattering cross section close to the resonance.
The experimental challenge is to realize similar degeneracy conditions near the
217-G resonance as we have achieved at a low magnetic field [105]. With some
improvements, conditions for superfluid regimes seem to be attainable. To give an
example, a Lifshitz point [70, 115] in the phase diagram, where zero momentum
pairs become unstable, may be expected at a temperature corresponding to about
15% of the Fermi temperature of the heavy species6.

In conclusion, we have shown that the 161Dy-40K mixture possesses a broad
Feshbach resonance offering favorable conditions for experiments on strongly inter-
acting fermion systems with mass imbalance. In particular, the system features a
substantial suppression of inelastic losses near resonance, which is a key require-
ment for many experiments. Novel interaction regimes, including unconventional
superfluid phases, seem to be in reach.

6 Note that in Ref. [115] temperatures are given in units of a reduced Fermi temperature, which at the
Lifshitz point is a factor of 3.4 higher than the Fermi temperature of the heavy species.
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4.7 supplemental material

4.7.1 Feshbach Resonance Scenario

To date, no theoretical model is available that would describe the scattering prop-
erties of our Dy-K mixture. Our experimental characterization in the region of
interest therefore relies on a combination of various observables, like the posi-
tions of resonance poles and zero crossings, and measurements of the interspecies
thermalization time. Our basic model assumption is a scenario of three partially
overlapping s-wave Feshbach resonances.

Wide-range Thermalization Scan

Figure 4.6 shows a thermalization scan over the wide magnetic field range from 155
to 255 G. After evaporatively cooling the mixture at low magnetic fields down to a
temperature of about 1.3 µK, a short period (60 ms) of species-selective parametric
heating by trap power modulation was applied to increase the temperature of the
1.4×104 K atoms to about 4 µK, leaving the temperature of the 2.9×104 Dy atoms
essentially unchanged. For carrying out the measurements in the high-field region,
we then quickly (within 12 ms) ramped up the magnetic field to the variable target
field, where (partial) thermalization took place. After a hold time of 50 ms, the
magnetic field was quickly (within 1 ms) ramped to 235.4 G. At this field, chosen
for thermometry, the interspecies interaction is very weak and the sample expands
ballistically after release from the trap. Temperatures were measured by standard
time-of-flight imaging.

The thermalization scan reveals a scenario dominated by three broad Feshbach
resonances, at the centers of which very fast interspecies heat exchange occurs and
the temperatures become nearly equal. The corresponding positions are located
near 200, 217, and 253 G (see solid arrows in Fig. 4.6). While the first resonance
(near 200 G) is quite strong and has considerable overlap with the 217-G resonance
(second resonance), the third resonance (near 253 G) is clearly weaker and well
separated from the two other ones. Further, much narrower resonances exist (dashed
arrows), with negligible effect on the overall scenario.The resonance near 217 G is
the strongest one and thus the feature of main interest in our present work.

Model of Three Overlapping Resonances

The magnetic-field dependence of the scattering length in a scenario of overlapping
Feshbach resonances, assuming a constant background abg, can be represented by
the product formula [143, 144]

a(B) = abg

n

∏
i=1

B − ci

B − pi
, (4.2)
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Figure 4.6: Thermalization scan revealing magnetic-field dependent resonances in inter-
species elastic scattering. The mixture is initially prepared in a non-equilibrium
situation, where the 161Dy component (1.3 µK) is much colder than the 40K com-
ponent (4 µK). Within a short hold time of 50 ms, interspecies thermalization is
observed. Fast thermalization is found to reach essentially equal temperatures
at three points (solid arrows), which reveals the existence of three relatively
broad Feshbach resonances. Indications of further, much narrower resonances
are observed as well (two examples marked by dashed arrows). The broadest
resonance, centered near 217 G is the one of main interest for the creation of
strongly interacting Fermi-Fermi systems.
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where the parameters pi and ci denote the positions of the poles and zero cross-
ings, respectively. A straightforward transformation gives the equivalent sum
formula [144]

a(B) = abg

(
1 −

n

∑
i=1

δi

B − pi

)
(4.3)

with

δi = (ci − pi)
n

∏
j ̸=i

cj − pi

pj − pi
. (4.4)

A practical advantage of the product formula is that it explicitly contains the
positions ci of the zero crossings, which are often good observables in an experi-
ment [145, 146]. An advantage of the sum formula is that the parameters δi provide
a measure for the relative strengths of the different resonance contributions. In
the case of a single, isolated resonance δ1 = c1 − p1 corresponds to the common
definition [32] of the Feshbach resonance width.

Determination of Poles and Zero Crossings

The poles (zero crossings) associated with Feshbach resonances can be identified as
points of fastests (slowest) thermalization in scans like the one shown in Fig. 4.6.
We have carried out further scans with higher resolution in narrower magnetic
field ranges near the resonance centers, and obtained values p1 = 200.1(2)G and
p2 = 217.27(15)G for the poles of the two broadest resonances. Here, because of the
fast thermalization, we used short hold times of 50 ms (15 ms) for the determination
of p1 (p2).

For the observation of zero crossings, close to which thermalization is very slow,
long hold times are favorable. In a scan with a hold time of 1.2 s, we determined
the position c1 = 203.0(2)G for the zero crossing between the poles p1 and p2.

The third resonance (near 253 G) is found in a region where the local background
scattering length is very small. This is a consequence of the near cancellation of
the the global background scattering length abg by the effect of the two broad
resonances. While the pole position p3 can be determined in a straightforward way
from the point of fastest thermalization, a determination of the two zero crossings
c2 and c3 solely based on the observation of thermalization minima turns out to be
rather inaccurate. We therefore investigated thermalization in a wide range covering
c2, p3, and c3 and analyzed the resulting data based on the model introduced in
Ref. [147] and applied to our mixture in [105] (see also Sec. 4.7.1).

The model is based on the assumption of thermalization described by an expo-
nential decrease of the temperature difference with increasing hold time, with a
relaxation rate being proportional to the elastic scattering cross section and thus
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Figure 4.7: Thermalization scan in the region of the third resonance. The temperature differ-
ence ∆T was measured for a long hold time of 1.2 s. The solid line represents a fit
based on the thermalization model described in the text, from which we obtain
the pole position (minimum of ∆T) and the positions of the two neighboring
zero crossings (maxima). Note that we have applied a rejection algorithm based
on repeated application of Chauvenet’s criterion [148] to reduce the effect of
outliers and barely resolved narrow Feshbach on the fit. This removed 17 data
points (open symbols) of in total 393 data points and resulted in very robust
parameter values.

being proportional to a2(B). The temperature difference ∆T = TK − TDy can then
be written as a function of the magnetic field strength,

∆T(B) = ∆T0 exp[−Ca2(B)] , (4.5)

where ∆T0 is the initial temperature difference. The parameter C is proportional
to the hold time and further determined by a combination of the experimental
parameters, as described in Refs. [105, 147].

The measurements in Fig. 4.7 were taken in a wide range between 229 and 275 G
under similar initial conditions as in Fig. 4.6, but with a much longer hold time of
1.2 s. Thermometry was performed in the same way as in Fig. 4.6. We fitted the data
based on the thermalization model [Eq. (4.5)] and the product formula [Eq. (4.2)]
for a(B). The parameters p1, p2, and c1 were fixed to their separately determined
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Table 4.1: Parameters characterizing the scenario of three overlapping resonances. The
given 1σ uncertainties include the fit errors and estimates for model-dependent
errors. Additional magnetic-field uncertainties from the calibration and from
day-to-day fluctuations are estimated on the order of 0.1 G.

i pi (G) ci (G) δi (G)

1 200.1(2) 203.0(2) 7.9(7)

2 217.27(15) 243.4(4) 24.6(6)

3 252.79(8) 257.5(4) 1.2(1)

values (see above discussion). The fit (solid curve in Fig. 4.7) yielded the parameter
values p3 = 252.79(8)G, c2 = 243.4(4)G, and c3 = 257.5(4)G.

The complete set of resonance parameters pi and ci for our three-resonance model
is summarized in Table 4.1. Based on Eq. (4.4), we also calculated the parameters
δi, which characterize the strengths of the resonances. The resulting values (last
column) confirm that the second resonance is the strongest one. The first resonance
is about three times weaker, and the third resonance is about 20 times weaker than
the strongest one.

Background Scattering Length

Having determined the poles and zero crossings describing our three-resonance
scenario, the remaining task is to determine the background scattering length
abg, which is left as the only unknown quantity in Eqs. (4.2) and (4.3). For this
purpose, we carried out thermalization measurements in a similar way as described
in Ref. [105]. We selected magnetic field regions, where thermalization takes place
on experimentally convenient timescales and which are free of narrow Feshbach
resonances, and determined the absolute values |a(B)| of the scattering length
for nine different values of the magnetic field strength. The corresponding signs
uniquely follow from our three-resonance model. In this way, we obtained the nine
measured values shown in Fig. 4.8. We finally fitted Eq. (4.2) to these data points
with abg being the only free parameter. This yields the value of abg = +59(3) a0,
where the given uncertainty includes the fit error and the effect of the uncertainties
in the resonance parameters pi and ci.

We estimate that systematic uncertainties in the experimental parameters (mainly
uncertainties in the atom numbers and trap frequencies) and model-dependent
errors result in an additional relative uncertainty of 15%, which dominates the
error budget. Therefore, our final result for the background scattering length in
the 200-G region is abg = +59(9) a0. It is interesting to note that our previous
measurement [105], which was carried out at a low magnetic field of 430 mG, gave
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Figure 4.8: Magnetic-field dependence of the scattering length in the range of interest.
The solid lines represent our model of three overlapping Feshbach resonances,
with all parameters being determined experimentally. The experimental data
points result from measurements of the scattering cross section by interspecies
thermalization.

essentially the same value (|abg| ≈ 60 a0) , although the background scattering
length may slowly vary with the magnetic field.

Analysis of Thermalization Measurements

The basic idea of our cross-species thermalization measurements to determine the
Dy-K elastic scattering cross section (see example in Fig. 4.9) is the same as reported
in [105], but here we have to deal with the additional complication that strong Dy
losses occur during the thermalization process.

Our model was originally introduced in [147] and can be expressed in terms of a
differential equation for the temperature difference ∆T = TK − TDy,

d
dt

∆T = −σ2
el

ξq
3π2

mDyω̄3
Dy

kBTDy
(NDy + NK)∆T, (4.6)

where σel = 4πa2 is the cross section for elastic Dy-K collisions and

ξ = 4mDymK/(mDy + mK)
2 (4.7)
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Figure 4.9: Example for cross-species thermalization (B = 229.5 G) and the fit analysis to
extract a value for |a|. (a) Observed time evolution of the atom numbers NDy
(blue open squares) and NK (red open circles) together with fits by simple expo-
nential functions with a constant offset. (b) Time evolution of the temperatures
TDy and TK; the increasing Dy temperature is again fitted by a simple heuristic
model function. (c) Evolution of the temperature difference ∆T = TK − TDy
with a numerical fit based on Eq. (4.6).
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accounts for the effect of mass imbalance in the collisional energy transfer. The
factor q depends on the ratio of polarizabilities, masses, and temperatures [105].
Under our experimental conditions, this factor can be well approximated by a
constant q = 1.45.

A typical data set for the time evolution of the atom numbers NDy, NK and the
temperatures TDy, TK is shown in Fig. 4.9(a) and (b). As a first step in the analysis,
we independently fit the observed decay of NDy, the slow decrease of NK, and
the increase in TDy with simple exponential model functions, which we generally
find to describe the data well. As a second step, we fit a numerical solution of
Eq. (4.6) to the decreasing temperature difference ∆T, with the evolution of TDy and
NDy + NK described by the fit functions obtained before. Figure 4.9(c) illustrates
that the fit with the two free parameters σel and ∆T0 matches the experimental data
very well. For our specific example (B = 229.5 G, ω̄Dy/2π = 180Hz), we obtain a
best estimate for σel corresponding to |a| = 87 a0.

217-G Resonance: Strength and Universal Range

For the experiments described in the main text, we are mainly interested in the
interspecies scattering length near the pole of the 217-G resonance. Here, the
scattering length can be well approximated by

a(B) = − A
B − B0

a0 , (4.8)

where B0 = p2 = 217.27(15)G and A = δ2 abg/a0 = +1450(230)G.
For discussing the character of this Feshbach resonance in terms of entrance-

channel or closed-channel dominated behavior [32], it is useful to introduce a
characteristic length as defined by the range parameter [109]

R∗ =
h̄2

2mra0 δµ A
. (4.9)

Here mr = 32.04 a.m.u. is the reduced mass and δµ the (unknown) differential
magnetic moment. The universal range of a Feshbach resonance is reached if
|a| ≫ R∗, which also represents a necessary condition for a strong Pauli suppression
of few-body losses [81].

The properties of the molecular states underlying our Feshbach resonances are
currently unknown and require further in-depth investigation. For now, to get an
idea of the universal range, we use a conservative guess for the differential magnetic
moment δµ = 0.1 µB, where µB is Bohr’s magneton. This yields R∗ ≈ 300 a0

as a conservative estimate for the range parameter. We thus conclude that the
universality condition |a| ≫ R∗ is rather easy to fulfill near the pole of our 217-G
Feshbach resonance. We note that also the many-body condition kFR∗ ≪ 1 for
universality in a fermionic system (Fermi wave number kF) is well fulfilled under
realistic conditions.
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4.7.2 Decay

Overview of Losses in the Resonance Region

The loss scan in Fig. 4.10 presents an overview of the complex magnetic-field
dependence of losses in the region of the 217-G resonance. Here the number of
Dy and K atoms was recorded after a hold time of 150 ms in the trap at a constant
magnetic field. Interspecies losses show up as correlated features in the loss spectra
of both species.

A broad loss feature appears for both species about 0.5 G below the resonance
center, where we estimate a scattering length of roughly +3000 a0. This feature
resembles observations made in spin mixtures of 6Li [39, 131, 132] and 40K [130] and
indicates the formation of weakly bound dimers, which after secondary collisions
decay to deeply bound molecular states. The fact that such losses appear not at
the center of the resonance, but on the side with large positive scattering length, is
intrinsic to two-component fermion systems near broad Feshbach resonances with
strong Pauli suppression of inelastic few-body processes.

The loss spectrum also reveals several narrow interspecies features. Some of them
appear as resolved resonances, but other structures rather resemble a fluctuating
background. In between features of increased losses, good regions can be identified
where the lifetime exceeds 100 ms. Besides interspecies losses, we have observed
intraspecies losses for Dy. This can be seen from the background atom number
(NDy ≈ 9500) in Fig. 4.10, which is a factor of 2.5 below the initial atom number.
These Dy losses generally show a fluctuating background behavior, as observed in
[126].

From the timescale of losses (on the order of 100 ms), we conclude that recom-
bination processes are no problem for experiments on short time scales (typically
below 10 ms), such as the hydrodynamic expansion studied in the main text. For
experiments on longer timescales, however, it may be important to choose good
spots, where both intraspecies and Dy interspecies losses are minimized. The data
of Fig. 5 in the main text were recorded on such a spot at 217.5 G.

Model for Fitting Decay Curves

For extracting three-body rate coefficients from atom number decay curves, one has
to take into account the heating of the sample [38]. Our simple model to avoid this
complication is based on the initial behavior near t = 0, which can be characterized
by the initial number N0 = N(t = 0) and the initial decay rate 1/τ = −Ṅ(0)/N(0).
To extract optimum values for these parameters from a fit to the observed decay,
we follow a heuristic approach based on the differential equation

Ṅ
N0

= − 1
τ

(
N
N0

)α

, (4.10)
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Figure 4.10: Loss scan in the resonance region. The plots show the number of Dy atoms
(upper panel) and K atoms (lower panel) left in the trap (ω̄Dy = 2π × 130 Hz)
after a hold time of 150 ms at a fixed magnetic field. The initial atom numbers
are NDy = 24 000 and NK = 6000, and the initial temperature is T = 500 nK.
The solid lines are Gaussian fits to the broad loss feature, excluding narrow
loss features. The shaded region indicates the 1σ-uncertainty in our knowledge
of the pole position of the strong 217-G resonance.
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where the phenomenological exponent α is a fit parameter, which absorbs possible
heating and other effects. We find that the solution

N(t) =
N0

α−1
√

1 + (α − 1) t/τ
(4.11)

fits our loss curves for all single- and mixed-species cases very well and is thus
applied to all cases discussed in the present work. The calculation of rate coefficients
is then based on the values for the fit parameters N0 and τ.

Decay of K in the Mixture

Here we analyze losses of K observed in the Dy-K mixture in terms of three-
body processes and extract upper limits for the corresponding rate coefficients.
Three-body decay of K alone is known to be very weak and can be neglected here.

We first assume that losses are caused by processes involving one K and two Dy
atoms. This leads to the loss equation

ṄK = −K′
∫

d3r nKn2
Dy . (4.12)

We approximate the number density distributions ni (i = K, Dy) in the harmonic
trap (mean frequencies ω̄i) by thermal Gaussian distributions with spatial widths
σi = ω̄−1

i
√

kBT/mi. After integration we obtain

ṄK

NK
= −K′ N2

Dy

(
σ′

2πσKσ2
Dy

)3

, (4.13)

where σ′ = (σ−2
K + 2σ−2

Dy )
−1/2.

In an analogous way, we now assume that losses are caused by processes involv-
ing two K atoms and one Dy atom (two K atoms lost per event). This leads to the
loss equation

ṄK = −2K′′
∫

d3r n2
KnDy , (4.14)

which after integration simplifies to

ṄK

NK
= −K′′ NKNDy

(
σ′′

2πσ2
KσDy

)3

, (4.15)

where σ′′ = (2σ−2
K + σ−2

Dy )
−1/2.

To obtain values (upper limits) for the event rate coefficients, we analyze the
decay curves displayed in Fig. 5(a) in the main text. By using the above fit model, we
extract values for the initial K decay time τ = −NK/ṄK = 350(150) ms, the initial K
atom number NK = 3100(200), and the initial Dy atom number NDy = 16 700(400).
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From Eqs. (4.13) and (4.15) and the experimental parameters (ωDy = ωK/3.6 =

2π × 130 Hz, T = 540 nK) we finally obtain

K′ ≈ 4 × 10−25 cm6/s (4.16)

K′′ ≈ 3 × 10−25 cm6/s (4.17)

as upper limits for the interspecies three-body event rate coefficients.

Decay of Dy

Here we analyze the observed Dy decay (data shown in Fig. 5 of the main text)
under the assumption that these losses are caused by collisions of three Dy atoms.
The corresponding loss equation reads

ṄDy = −3K3

∫
d3r n3

Dy , (4.18)

which after integration simplifies to

ṄDy

NDy
= −3K3 N2

Dy

(
1

2π
√

3 σ2
Dy

)3

. (4.19)

From the fit to the Dy decay shown in Fig. 5(a) of the main text, we extract
τ = 320(50)ms and NDy = 16 700(400) and obtain the value

K3 = 3.4(5)× 10−25 cm6/s (4.20)

for the event rate coefficient. Analyzing the data in Fig. 5(b) of the main text in
the same way, with the fit yielding τ = 1000(150)ms and NDy = 19 700(400), we
obtain the value

K3 = 8.1(1.2)× 10−26 cm6/s . (4.21)

The fact that he former value (with K present) is about four times larger cannot
be explained by three-body loss events involving K atoms, as their contribution is
too weak. However, our data show that K atoms somehow catalyze Dy losses. The
underlying mechanism is currently not understood.

4.7.3 Interaction-induced Contraction

Here we introduce a model that describes the contraction of the mixture induced
by the resonant interaction in the unitarity limit under the assumption of zero
temperature. The results point to a possible mechanism how the presence of K
atoms can enhance three-body losses in the Dy component.



4.7 supplemental material 41

Theoretical Model

We calculate the number density distributions nDy(r) and nK(r) of the trapped
interacting species in the Thomas-Fermi limit, in which kinetic energy terms related
to density variations can be neglected and the local density approximation can be
applied. This also allows us to reduce the situation to a spherical trap; the solutions
can then be scaled to the real, anisotropic trap.

The functional for the total energy can be written as

E =
∫

d3r (UDynDy + UKnK + ϵDy + ϵK + ϵint) , (4.22)

where UDy(r) = 1
2 mDyω̄2

Dyr2 represents the Dy trap potential and

ϵDy =
3
10

(6π2)2/3 h̄2

mDy
n5/3

Dy (4.23)

denotes the kinetic energy density of Dy without interaction. For the K component,
UK and ϵK are defined analogously.

For the interaction energy density we use the approximation

ϵint = −b × 3
10

(6π2)2/3 h̄2

2mr

nDynK

(n2
Dy + n2

K)
1/6

. (4.24)

This expression was introduced in [114] to fit the equation of state of a non-
superfluid mass-balanced system [149]. Remarkably, we noticed that the same
expression also provides a very good fit to the equation of state for the imbalanced
mixture with mass ratio 40/6, which was published in [150]. The only difference
seems to be a slight difference in the optimum value of the prefactor b. While
b = 1.01 provides an optimum fit for the mass-balanced case [114], we found
the slightly higher value b = 1.04 for the mass-imbalanced (40/6) case. In the
representation of Eq. (4.24), the interaction term seems to be nearly independent of
the mass ratio. Therefore, we are confident that it can be readily applied also to our
mass ratio of 161/40.

The number density distributions nDy(r) and nK(r) are found by minimizing the
energy functional. This is done by varying the densities with the gradient descent
method under the constraint that the atom numbers NDy and NK are fixed. We
represent the densities on a spatial grid, of which the step size is below 10−3 of
the typical Thomas-Fermi radius of the clouds. The number of iterations in the
minimization algorithm guarantees a relative precision of 10−4 for number densities
and derived quantities.

Density Increase and Loss Enhancement

Figure 4.11 shows the effect of interaction for NK/NDy = 0.12, which has been
chosen to demonstrate that even a small fraction of K atoms can have a considerable
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Figure 4.11: Radial density distributions for the Dy and K components, with (solid lines)
and without (dashed lines) interaction for a number ratio NK/NDy = 0.12. All
profiles are normalized to the quantities r0 and n0, which represent the Thomas-
Fermi radius and the central density of the non-interacting Dy component,
respectively.

effect. The interaction-induced contraction is clearly seen in profiles. The central Dy
(K) density is increased by a factor of 1.64 (1.70). To quantify the total enhancement
of three-body decay of Dy and K within the whole trap, we relate the total three-
body decay rate to the case without interspecies interaction (Thomas-Fermi profile
nTF), and define the corresponding factors

βi ≡
∫

d3r n3
i (r)∫

d3r n3
TF,i(r)

, (4.25)

where i = Dy, K. These factors can describe both the effect of attractive (β > 1)
or repulsive (β < 1) interaction in the mixture, but here we focus on the case of
the strong attraction on resonance. By numerical integration of the cubed density
profiles of the two species we obtain βDy = 2.07 and βK = 2.85. It is remarkable
that the presence of a relatively small minority component of K can have such a
large effect on the profile and thus three-body recombination rate of the majority
component of Dy.

Within the assumptions of our model, the enhancement factor depends only on
the atom number ratio NK/NDy and the trap frequency ratio ω̄K/ω̄Dy. Since, in
our experiments, the latter is fixed to a value of 3.6, we can draw universal curves
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Figure 4.12: Enhancement factors for three-body recombination as a function of the global
polarization. The solid curves refer to intraspecies three-body collisions of Dy
and K, while the dashed curves refer to interspecies processes involving both
atoms. The vertical dashed line corresponds to the situation shown in Fig. 4.11.

for βDy and βK as a function of the global polarization (NK − NDy)/(NK + NDy);
see Fig. 4.12. The solid line that represents the Dy case shows a maximum value of
about βDy = 4 for a polarization of −0.7 (NK/NDy = 0.54), which highlights the
possible strength of the effect.





5
M O N T E C A R L O S I M U L AT I O N S F O R H Y D R O D Y N A M I C
M I X T U R E S

For our goal to realize a strongly interacting Fermi-Fermi mixture, extensive Fesh-
bach scans were performed to find suitable broad interspecies Feshbach resonances,
as for example described in our previous publications in Chapter 4 or Ref. [151].
An indication of strong interactions was observed when switching off the trap and
letting the two species expand freely at the center of a Feshbach resonance. Contrary
to the non-interacting case, the expansion is slowed for potassium and the size of
the two clouds after expansion was similar, hinting at a hydrodynamic behavior.
However, density and temperature of the samples precluded an explanation in
terms of superfluid hydrodynamics, instead we expected the behavior to be the
result of a large number of collision events, so-called collisional hydrodynamics.
To better understand our system and test this hypothesis, a numerical simulation
of the system was developed. Direct simulation Monte Carlo (DSMC) [152–154]
and molecular dynamics (MD) schemes [155, 156] have been used extensively to
investigate the behavior of gaseous and liquid systems and connected engineering
problems [157–161], in biochemistry [162], and recently also in the context of ultra-
cold atomic gases [129, 163–165]. Here, we have used a modified version of these
approaches as a test model to better understand our particular problem. In this
chapter the general working principle of the simulation is explained and compared
to other DSMC algorithms. Furthermore, its behavior is characterized and possible
extensions and limitations are discussed.

5.1 simulation model

The goal of the simulation is to show that a simple short-range two-body collision
model as described in Chapter 3 can reproduce the observed hydrodynamic behav-
ior. To this end, the simulation models the interaction of particles as collisions of
hard spheres. This simple model is enough to reproduce behavior like thermaliza-
tion, hydrodynamic expansion, or other in-trap dynamics in real systems, which
can be used as a reference. In this section, the employed methods and details of the
simulation will be explained and and some simple validation tests are performed.

45
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5.1.1 General Method

We consider the evolution of an ensemble of particles in the normal phase. For our
double-species experiment the real-space and velocity-space evolution is described
by a phase space density fi for each species i ∈ {K, Dy} that satisfies the space-
homogeneous Boltzmann equation

∂ fi

∂t
+ v∇r fi = Icoll( fi, f j). (5.1)

Here, fi(r, v, t) is the phase space density at position r and velocity v at time t.
The collision properties of the system enter in the collision integral Icoll( fi, f j).
Since exact solutions to the Boltzmann equation only exist in some cases, different
numerical and approximation approaches have been developed for this problem,
see for example Ref. [166] and references therein.

The basic principle of the numerical treatment of the Boltzmann equation
with molecular dynamics (MD) [155] and direct simulation Monte Carlo (DSMC)
schemes [153] is that the computation of one time step ∆t can be split into two
processes. In the absence of collisions, Eq. (5.1) reduces to the equation of motion

∂ fi

∂t
+ v∇r fi = 0, (5.2)

which can be solved analytically in free space. Then, the contribution of collisions
can be included as a second step by calculating the collision integral

Icoll( fi, f j) =
∫

d3vj

∫
dΩ

dσ

dΩ
∣∣vi − vj

∣∣ ( f ′i f ′j − fi f j

)
. (5.3)

It describes elastic collisions between two particles with initial velocities v and
final velocities v′

i, the phase space density after the collision f ′i = fi(r, v′
i, t), and

a differential cross section dσ
dΩ . This split step method is a valid assumption, as

long as ∆t is much smaller than the mean time between collisions. However, the
computation of Icoll( fi, f j) can be costly.

One possibility to facilitate the calculation of Eq. (5.3) is to sample f with
individual particles, which can interact with each other. In this so-called test particle
method, each particle is represented by a position vector r and a velocity vector v,
the values of which are initialized with a random number generator reproducing
f .1 Then, for each time step, first, the new position coordinates and velocities are
calculated for each particle. In the free expansion case, the new position is simply
given by

r(t + ∆t) = r(t) + v∆t, (5.4)

1 Depending on the shape of f , this can be done with a uniform random number generator, a Gaussian
random number generator or the acceptance-rejection method [167].
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and the velocities remain unchanged because of the lack of any potential gradients.
This step can be changed to include the influence of gravity and optical or magnetic
potentials.

In the second step, the collision process is modeled. In our special case, we
only consider short-range interactions between atoms from different species, since
intraspecies interactions are suppressed for fermions at low temperatures.2 The
collision of two atoms itself is modeled as the fully elastic s-wave collision of two
hard spheres, by transforming their velocities into the center-of-mass (CoM) system
vi,CoM = vi − vCoM, and rotating the CoM velocities into a random direction by
multiplying with the random unit vector eR. The velocity vectors after the collision
are then given by

v′
K = vCoM + eRvK,CoM, (5.5)

and
v′

Dy = vCoM − mK

mDy
eRvK,CoM, (5.6)

where
vCoM =

mKvK + mDyvDy

mK + mDy
. (5.7)

This collision process is isotropic, and energy and momentum conserving. However,
it does not include any quantum statistical effects (like Pauli blocking), which is a
good approximation for our thermal or only near-degenerate system.3

Selection of Collision Pairs

Test particle simulation models used to compute the Boltzmann equation are
usually divided in how they select the collision pairs. In our particular problem we
treat the atoms as hard spheres with a size given by the collisional cross section. At
strong interactions, e.g. close to or at the center of a Feshbach resonance, we have
to use the finite relative momentum limited quantum mechanical cross section

σ =
4πa2

1 + a2k2 , (5.8)

where a is the interspecies scattering length and k = µvr/h̄ is the relative momen-
tum of the collision pair, with reduced mass µ and relative velocity vr.

2 In the case of K, the relevant temperature for p-wave collisions is kBTp = h̄2/mr2
0 ≈ kB × 300 µK [107],

consequently these collisions are suppressed at the typical temperatures of the experiment. In the
case of fermionic Dy, because of universal dipole scattering [87, 89], the intraspecies cross section is
σD,Dy = 32π

15 a2
D,Dy = 7.2 × 10−16 m2, with aD,Dy = 195 a0 [105, 168], which is much smaller than the

typical cross section near an interspecies Feshbach resonance.
3 The relevant temperature scale for this is the Fermi temperature TF. At our typical experimental

conditions TF is on the order of 100 nK, well in the regime where s-wave interactions are dominating.
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In MD simulations [155] with hard sphere interactions the motion of the particles
is tracked and a collision is happening if the relative distance between two particles
is smaller than the radius of the cross section. This results in the requirement∣∣ri − rj

∣∣ < 2
a√

1 + a2k2
, (5.9)

where ri,j is the position of the particles. Typically, to determine when and between
which particles the next collision is happening, the points in time of closest approach
are calculated for each possible pair. Between collisions the particles can move
freely, so the particle motion is propagated to the closest of these points in time
and if the collision condition is satisfied, the collision is performed. Then the next
collision pair is determined. For each time step, this calculation has to be done for
each possible pair, subsequently the computational effort scales as O(N2), with N
being the number of simulated particles. In our two species experiment this would
lead to NK × NDy calculations, which is impractical for large atom numbers. The
advantage of MD simulations on the other hand is that they do not require many
assumptions but are still able to reproduce the correct behavior of the gas.

In contrast, the DSMC method [153] employs a probabilistic approach. The
coordinate space is divided into a grid of cells. If one limits the size of the cells to
be smaller than the mean free path, instead of checking individually which pairs
can collide, a statistically expected collision rate can be computed for each cell
and the corresponding amount of collisions per timestep is performed randomly
among the pairs of a cell. With this probabilistic approach it is not necessary to
check all individual pairs, which greatly improves the computational scaling to
O(N). However, as the variation of the collision rate is coarse-grained by the cell
size, so is the resolution of processes that depend on the collision rate. This can
limit the accuracy of DSMC results, especially when density and local collision rate
vary over the sample [169–171]. Several elaborate schemes have been introduced
to combat this, for example by introducing locally adaptive cell sizes and time
steps [164].

As the DSMC approach relies on theoretical predictions to infer the number of
collisions per cell and timestep, and we want to reproduce the behavior or the
experiment without many assumptions, we have chosen an approach similar to the
more fundamental MD method. Instead of calculating the point in time for the next
collision, we use a constant timestep. For each timestep we check condition (5.9),
but by assuming that only pairs of particles collide that are near each other, the
volume can be divided into smaller cells into which the atoms get sorted [172].
Then, only pairs of atoms inside a particular cell have to be checked for the collision
condition, which greatly reduces the number of required operations.

This approach is only valid if
√

σ is smaller than the physical extent of the
system. Furthermore, it may miss collisions of particles close to the cell border,
which leads to a smaller collision rate. This issue can be partly solved by adding
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Figure 5.1: Schematic of the collision detection and cells. Dy (blue) and K (red) atoms can
collide if their spheres with radius calculated from Eq. (5.8) (dashed circles)
overlap. Checking all possible pairs of the two ensembles is very expensive.
Dividing the space into cells (vertical line) and only checking pairs in those cells
is more efficient, however collisions on the border can be missed. This can be
circumvented by overlapping the cells (teal area). Still then it is possible that
pairs outside the overlap, which have a low relative velocity and therefore a
large cross section, are missed.

an overlap to the cells (see Fig. 5.1) that is on the order of the mean of
√

σ. At low
scattering length, where the influence of the relative momentum term is small, this
approach works well, however, when it becomes significant, the overlap can soon
become larger than the cell size and even the sample size, which again degrades
the performance. In practice we adapt the number of cells (and therefore their size)
such that the overlap does not exceed the cell size. In extreme cases this can mean
that only one cell is used.

Even with cell division, in some cases the atom number in the experiment might
be so high that the computation time becomes infeasibly long. In this case, a macro-
particle approach is useful. Each of the Nsim simulated particles then represents
s atoms, where s = N/Nsim is the scaling parameter between experiment and
simulation.4 This approach speeds up the simulation on the order of s2, because

4 It should also be added that in low atom number systems, s ≪ 1 can be used to simulated more
particles and therefor reduce the effect of random noise from the discretization of f .
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less particle pairs have to be checked for the collision condition. To still get the
correct collision rate, the cross section has to be multiplied by s as well to σ′ = sσ

and the collision condition is computed with σ′. However, s can not be chosen
arbitrarily high. On the one hand, a too small simulated particle number leads to a
coarse sampling of f and therefore a reduced accuracy of the simulation. On the
other hand, the scaled cross section at some point approaches the spatial size of
the system, which can also lead to problems.

Initialization, Timesteps and Blocking Time

For the simulation of our double-species experiment, for each species Ni position
vectors r and Ni velocity vectors v are generated in the beginning, where Ni is the
particle number per species. The initial values for v are distributed in equilibrium
according to the Maxwell-Boltzmann distribution

f (v) ∝ e
− (v−µv)2

2σ2
v . (5.10)

We generate them with a Gaussian random number generator, where the param-
eters for the mean µv and width σv are calculated according to the experimental
parameters. In particular, we require

σv =

√
kBT
m

, (5.11)

where T is the starting temperature of the sample and m is the mass of one atom.
Usually, µv is 0 but can be set to a non-zero value to account for an initial CoM
motion.

The distribution of r depends on the physical system that is studied. In a har-
monic dipole trap, in the case of a thermal sample, the number density is Gaussian,
so we again use a Gaussian random number generator with

σr = σv/ω, (5.12)

where ω is the angular trapping frequency. Also here, µr can be used to shift the
cloud relative to the trap center and simulate out of equilibrium situations. In
contrast, in a box potential we use uniformly distributed random positions and
require that r < rb, where rb is the radius of the box trap.

Other technical parameters of the simulation, e.g. the time step ∆t, can be inferred
from the values of T, m and ω. As mentioned before, the split-step approach works
well as long as ∆t is much smaller than the mean time between collisions. To
estimate the mean time between collisions, we look at the collisional volume σvr

that is swept by one particle moving through space per unit time, with the mean
relative velocity

vr =

√
8
π
(σ2

v,K + σ2
v,Dy), (5.13)
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as given by the Maxwell-Boltzmann distribution of the relative velocities of two
species of particles with a mean speed as given in Eq. (5.11). At unitarity, the mean
cross-section reduces to

σ =
4π

k
2 , (5.14)

with
k =

µvr

h̄
(5.15)

being the mean relative k vector and µ the reduced mass. For a thermal gas in a
harmonic trap we calculate the number density in the trap center for each species

n0 =
1

(
√

πσr)3
. (5.16)

For a single particle moving through this density we can calculate the mean time
between collisions as

tc =
1

σvrn0
≃ 30 µs. (5.17)

This value was calculated using the parameters of the experiment in Sec. 4.2 (see
also Table 5.1). ∆t should then be chosen to be smaller than 30 µs.

To get the correct number of collisions in the simulation, ∆t should also be chosen
such that no collisions are missed. For this we calculate the time it takes a pair to
move through the collisional volume with radius

rc =

√
σ

π
. (5.18)

At unitarity, this reduces to

rc =
2
k
= 2

h̄
µvr

, (5.19)

and the time to move through this volume is given by

t = 4
h̄

µv2
r

. (5.20)

To not miss any collisions, the timestep should be chosen so small that even fast
particles can not move through their collisional volume during ∆t. In this case we
can make a conservative choice of

vr ≳ 5 vr, (5.21)

which covers the majority of pairs with high relative velocity. This results in

∆t ≲
1
6

h̄
µvr

2 ≃ 1 µs (5.22)
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as an upper bound for the time step, which also fulfills the requirement for the
split-step method.

In our implementation it is possible that the same pair is detected to collide again
in the next timestep after a collision if it did not yet travel out of the collisional
volume. This can be prevented by blocking this collision to happen for a time tb,
which is again given by the time it takes the pair to travel through the collisional
volume. An estimate for tb can be found by assuming

vr

3
< vr <

vr

2
, (5.23)

which covers the majority of slow pairs. This assumption ensures that the majority
of pairs should have traveled through their respective collisional volume and gives
an estimated transfer time of

tb ≃ 25
h̄

µvr
2 ≃ 150 µs, (5.24)

which is then used to block a pair of atoms from colliding again. tb can also be
calculated for each pair individually by explicitly calculating vr after the collision.
In homogeneous systems, the blocking time can also be computed analytically from
the trajectories of the two particles.

Here, we have calculated these parameters for the resonantly interacting condi-
tions given in Chapter 4. Following the same reasoning, the values can be adjusted
for different interaction strengths and temperatures. In practice the value of ∆t can
not always be chosen overly conservatively, as the overall computation time scales
inversely proportional to ∆t.

5.1.2 Validation Tests

To validate the working principles of the simulation described in the last section
we apply them to a simple system of a mixture of two interacting species in a box
potential. We can then compare the simulation results to theoretical predictions.

Scattering Rate

As a first step, we consider the mean collision rate ΓC, which in a homogeneous
system takes the form

ΓC = σvr
NKNDy

V
, (5.25)

where V = 4πr3
b/3 is the volume of the box with radius rb. We then compare this

to the recorded collision rate Γsim obtained by the simulation. Here we use the
boxing technique but no scaling. Figure 5.2 shows the accumulated total number
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of collisions over time of an exemplary run with NK = NDy = 2000 atoms at a
temperature of TK = TDy = 1 µK in a box with rb = 10.7 µm, where the collision
process was altered to not change the velocities of the particles. This is to test the
collision detection scheme and avoid errors that could arise from a change in the
phase space density. The scattering length was set to 1000 a0 and the unitarity
limit was disregarded. The accumulated collision number can be fitted with a
linear function to extract the mean collision rate from the slope. In this particular
case, the fit result of 8.591(2)× 105 s−1 deviates slightly from the theoretical value
ΓC = 8.638 × 105 s−1. However, the standard deviation over 20 simulation runs
is about 1.6%, which closely matches what we would expect when assuming a
Poissonian error in counting the collisions.

Figure 5.2: Accumulated number of collisions in a box without changing the particle
velocities. The red line shows a linear fit. The fit result for Γsim = 8.591(2)×
105 s−1 agrees well with the theoretical prediction of 8.638 × 105 s−1 within the
statistical variation over multiple simulation runs.

We now investigate the behavior of the scattering rate for different scattering
lengths. With increasing interaction strength, as a becomes comparable to the
interparticle distance, the recorded scattering rate Γsim starts to differ from the
theoretical prediction. Figure 5.3 shows Γsim/ΓC as a function of the diluteness
parameter η = a(N/V)1/3 in two cases. First we again only counted detected
scattering events (without changing the particle velocities) to verify the correct
implementation of the collision detection scheme. In this case, Γsim/ΓC drops as
1 − a/rb. This can be explained as a finite size effect by considering atoms close
to the potential walls. Because their scattering volume extends to outside of the
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Figure 5.3: Ratio of simulated collision rate to theoretical prediction depending on the
diluteness of the gas. Blue shows simulations where only collision events were
counted but to verify the collision detection sheme the particle velocities were
not changed. The red dash-dotted line shows a 1 − bη fit to this dataset. Light
red circles show simulations where the particle velocities were also changed in
the collision process.

potential, where no collision partners are present, their individual scattering rate is
diminished. In contrast, Eq. (5.25) assumes an infinite homogeneous system.

Figure 5.3 also shows Γsim/ΓC in a situation where the collision actually changes
the particle velocities. In this case, starting at about η = 1, Γsim increases until it
is almost 20% higher than the theoretical prediction, and drops rapidly after. The
finite size effect can not account for this. Instead, at high densities, the assumption
of uncorrelated Boltzmann distributions is not necessarily true anymore, see for
example Chapter 16 in Ref. [173]. A correlation between neighboring particles might
exist because of multiple recent collisions. Furthermore, the sum of all scattering
volumes is approaching the spatial size of the system, which effectively reduces the
free volume, and therefore increases the scattering rate. A third effect is that at some
point the particles are packed so closely that free motion is not possible anymore.
The particles then effectively get screened by their neighbors and are prevented
to interact with particles further away, which reduces the scattering rate. These
processes, to some extent, should be physical and not an artifact of the simulation.
Indeed, mathematical models for these processes exist and have been tested on
real gases [173], but in combination with the finite size of the simulated system,
no model could be found that reproduces the simulation results. For example,
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the finite size effect can be amplified if the gas is dense, because the particles get
pushed closer to the borders of the potential walls and therefore more of their
collisional volume lies in particle-free areas. Furthermore, if the atoms can not
move freely anymore, the blocking time essentially limits the number of collisions,
because the atoms are not allowed to interact with their neighbors after a collision,
but can also not move freely to find new interaction partners. It is therefore not
completely clear, which part of the behavior can be considered realistic and which
part is a result of the simulation model. However, most of these phenomena appear
at conditions where other descriptions like mean-field theory should be used to
describe the behavior of the gas. An integration of the mean-field concept to the
test-particle method has been done in Ref. [174].

Thermalization

As a second check, thermalization curves can be taken to provide further insight
into the mixture and extract valuable information from measurements. DSMC
algorithms have already been used in the field of ultracold atoms to investigate
cross-species and cross-dimensional thermalization in harmonic traps [129, 163],
providing a vital check of theoretical models.

Figure 5.4: Exemplary evolution of ∆T during thermalization of Dy and K. The red line
shows a fit after Eq. (5.30). The fit result for this particular run of τth, f =

1.184(1)× 10−3 s is slightly higher than the theoretical prediction of 1.176 ×
10−3 s, but agrees well within the statistical standard deviation over multiple
runs.
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To investigate thermalization between two species with different temperatures,
we consider the average energy transfer per collision

⟨∆E⟩ = ξkB(TK − TDy), (5.26)

where the factor

ξ =
4mKmDy

(mK + mDy)2 ≈ 0.638 (5.27)

accounts for the mass imbalance of the mixture. For a thermal gas in a box, the
average energy per particle is given as

⟨E⟩ = 3
2

kBT, (5.28)

and with these expressions one arrives at a differential equation for the difference
in temperature ∆T = TK − TDy [147, 175],

d
dt

∆T = −2
3

ξ
NK + NDy

NKNDy
ΓC∆T. (5.29)

The behavior of ∆T is near exponential (because of the dependence of ΓC on
temperature) and for short times can be approximated by

∆T(t) = ∆T(0) e−t/τth , (5.30)

where

τth =
3

2ξ

NKNDy

NK + NDy

1
ΓC

(5.31)

is the thermalization time. Figure 5.4 shows the evolution of ∆T of an exemplary
simulation run with NK = NDy = 5000, TK = 1.5 µK, TDy = 0.5 µK and rb =

10.7 µm. The simulation was again carried out with the boxing technique and
without scaling. To record TK and TDy we calculate the kinetic energy for each
particle per species from its velocity, take the average and convert to temperature
according to Eq. (5.28). The thermalization time is then extracted by fitting the
exponential function in Eq. (5.30) to ∆T. This yielded a mean thermalization time
of 1.04(5) τth, where the number in parentheses is the standard deviation over
50 repetitions. Depending on the fit interval, the simulation systematically gives
slightly higher results for τth, f , which can be explained by the dependence of ΓC and
τth on the temperatures of the two gases [129]. The collision rate is about 14% lower
when the clouds are thermalized compared to the beginning of the simulation,
which causes the thermalization time to be longer when extracted from a fit that
reaches from simulation start until thermalization. In conclusion, the results for ΓC
and τth of the developed simulation algorithm agree well with theory predictions.
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5.2 hydrodynamic expansion

After the validation of the simulation method, it can now be used to simulate
the dynamics in the experiment and and compare the results to the experimental
results. We can also use it to investigate the dependence on parameters that can
not easily be changed in the experiment.

5.2.1 Comparison with Experimental Data

As stated in Chapter 4, the algorithm was primarily developed and used to sim-
ulate an interacting mixture of K and Dy expanding out of the harmonic dipole
trapping potential after it was turned off. In the experiment, the expansion of K
was seemingly slowed down by the interaction with Dy and its profile was different
from the expected Gaussian profile. This effect varied with the interaction strength
and therefore with the magnetic field, and can be used to extract some informa-
tion about the Feshbach resonance, such as the resonance position. It furthermore
provided a check of our calibration of the scattering length.

The upper panels of Fig. 5.5 show a non-interacting, thermalized sample of Dy
and K after release from the trap. As can be seen, K is much more dilute than Dy, a
result of the faster expansion caused by its lower mass. The radial number density
of a non-interacting thermal gas expanding from a spherical symmetric trap with
trapping frequency ω is given by5

n(r, t) =
N√

2πr(t)
e

−r2

2r2(t) (5.32)

with the 1/e-radius at time t

r(t) =
√

σ2
r + σ2

v t2. (5.33)

To quantify the slowing effect, we define a central fraction C as the ratio of atoms
inside a circle with radius

√
2rDy(t) to the total atom number (marked green in

Fig. 5.5). For a non-interacting gas of Dy atoms, this gives

CDy =
1

NDy

∫ √
2rDy(t)

0
nDy(r, t)rdr = 1 − e−1 ≈ 0.63. (5.34)

In general, for any other non-interacting species (in our case K) with the same
temperature, the fraction of atoms in the same circle defined by the Dy expansion
will be

CK(t) =
1

NK

∫ √
2rDy(t)

0
nK(r, t)rdr = 1 − e

− ω2
K

ω2
Dy

mK
mDy

1+(ωDyt)2

1+(ωKt)2 . (5.35)

5 To be able to compare to the experimental absorption imaging pictures, the 3D-profile was already
integrated along the imaging direction and the azimuth angle.
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Figure 5.5: Absorption imaging pictures of non-interacting (upper panels) and resonantly
interacting samples (lower panels) of Dy and K in time-of-flight imaging. The
green circle indicates the

√
2rDy border.

The dependence on the ratios of masses and trap frequencies can be understood in
terms of the faster expansion of light particles and the initial size of the samples in
the trap. For the experimental parameters given in Tab. 5.1, we expect CK ≈ 0.24
in the case of no interactions. In contrast, the experimentally observed CK in the
strongly interacting regime was larger than the theoretical value, which hints at a
strong drag effect caused by many collision events with the slower expanding Dy.
This can also be seen in the lower panels of Fig 5.5, where the K cloud suddenly
appears much more dense compared to the non-interacting case.

To verify if the observed behavior could be explained by a hydrodynamic expan-
sion, we used the Monte Carlo simulation and replaced the box potential with a
free-space propagation of the particles right after release from a harmonic trapping
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Figure 5.6: Examples of simulated profiles for K and Dy obtained by using the same
parameters as in the experiment. Binning the positions of the particles to 1 ¯m
large bins gives the probability density shown in blue. Red shows a convolution
of the bin counts with a Gaussian. The orange dashed line shows the expected
profile after expansion with no interactions.

potential. As a result, we get two sets of coordinates in space corresponding to the
particle distribution.

The simulation was computed with the parameters listed in Table 5.1. As in
the experiment, the clouds were thermalized and had a temperature of TK =

TDy = 0.5 µK. The simulation was carried out with NK = 8000 and NDy = 22000
atoms. The particle distributions were generated according to a gas in a spherical
harmonic trap with ωDy = 2π × 120 Hz and ωK = 3.6 ωDy. Then, the particle
distributions were evolved in free space in the universal regime (a = ∞), where
the cross section is fully limited by the finite relative momentum of the collision
pair. The time-of-flight (TOF) of the mixture was tTOF = 4.5 ms, after which the
particle distribution was recorded. To be able to compare the simulation to the
experimental profiles, histograms are created from the discretized locations of the
particles. Since the resolution of the imaging system in the experiment is limited,
every atom contributes one point spread function to the image. To account for this,
a histogram of the positions of the simulated point-like particles is convoluted with
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a Gaussian profile with a width of 3 µm. Figure 5.6 shows exemplary histograms
converted to linear density and the corresponding reconstructed and theoretical
non-interacting linear density profiles. While the profile of dysprosium is still very
close to its non-interacting shape, the potassium profile is much more narrow
and deviates from a Gaussian curve. The central fraction of potassium is 0.40, as
opposed to its non-interacting value of 0.22.6 A comparison of experimental and
simulated profiles can be found in Fig. 4.3.

To check the model for the dependence of the scattering length on the magnetic
field given in Eq. (4.1), we made multiple simulations with varying a and compared
their values for CK with the results from the experiment, see Fig. 5.7. The error bars
indicate the standard deviation over 10 simulation repetitions. The observations
regarding the central fractions as well as the sizes of the clouds seem to be quanti-
tatively well explained by the simulations, supporting our physical interpretation
as a drag effect. Furthermore, the good agreement of the behavior of CK with the
interaction strength confirmed our calibration of the scattering length obtained by
other means (thermalization curves and wide thermalization scans).

Table 5.1: Standard parameters used in the simulations for Fig. 5.7.

NK NDy TK TDy s ∆t

8000 22000 500 nK 500 nK 5 1 µs

tTOF tb fK fDy mK mDy

4.5 ms 150 ms 432 Hz 120 Hz 40 u 161 u

6 In our publication [176], Chapter 4, the in-trap radius σr was disregarded in the definition of CK,
which leads to a value of 1 − e−mK/mDy ≈ 0.22 instead of 0.24. The rest of the calculations in this
chapter have been made with the definition of Eq. (5.35), as the ratio of σr varies with the ratios of m
and ω and affects the drag effect.
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Figure 5.7: Comparison of CK depending on the interaction strength for experiment and
simulation.

5.2.2 Scaling, Timesteps and Robustness Against Missed Collisions

The simulations to support the experimental data for the publication [176] were
originally carried out without the use of the sorting cells, because in the universal
regime, due to the momentum limited cross section, two particles with low relative
velocity can collide even if they are on two opposing ends of the cloud. These
collisions would be missed when using the cell approach. Because this means
testing all possible pairs for collision within every timestep, the simulation took
about 48 h, which is too long to be able to scan parameters and gather enough data
for statistical analysis. Therefore, different values for ∆t and the scaling parameter
s were investigated to speed up the computation. As this might also lead to missed
collisions, to verify that the behavior of the hydrodynamic expansion was not
affected, we conducted χ2 tests of the histograms.

To test whether two runs give an equivalent result with respect to the statistical
fluctuations, we use reduced χ2 testing. We compare bins of two histograms, ai and
bi, with the same total number of bins ν and same bin borders, and calculate the
reduced chi-squared

χ2
ν =

1
ν ∑

i

(ai − Kbi)
2

ai + K2bi
, (5.36)

where K is a renormalization factor between simulations with different numbers
of atoms. Since both bins are subject to statistical fluctuations, we have to add
their standard deviations, which we assume to be Poissonian, quadratically in
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Figure 5.8: Reduced χ2 and total number of recorded collisions Nc for a scan of the timestep
∆t. The reduced χ2 was calculated from histograms of the simulation profiles
compared to a profile of a full simulation without sorting cells, dt = 1 µs and
s = 1.

the denominator. To determine equivalence, χ2
ν is compared to the corresponding

95%-interval of the cumulative distribution function. The full simulation without
sorting cells, ∆t = 1 µs and s = 1 was used as reference.

As the sorting cell approach results in a substantial performance increase, we first
compared a run with 9 cells to the reference data. Interestingly, with χ2

ν,K = 0.95(9)
and χ2

ν,Dy = 1.01(13) the data was fully consistent within the 95%-interval, although
we know that some collisions are missed by this approach. The overlap between
cells was calculated with the mean relative velocity vr, which means that pairs
that are in different cells and have a small relative velocity were missed. This
suggests that collisions between particles further away than the overlap do not
contribute significantly to the slowing effect. We suspect that more collisions are
happening than what is necessary for the hydrodynamic expansion, which makes
the simulation quite robust against errors in the collision detection. This can also
be seen in Fig. 5.8, which shows χ2

ν and the number of total detected collisions
Nc for different values of ∆t. Nc starts to drop off before χ2

ν increases beyond the
95%-interval.

Despite the fact that the usage of the scaling factor s can speed up the simulations
drastically, it can also lead to problems with the scaled cross section and spatial
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Figure 5.9: Reduced χ2 as a function of the scaling factor s. Profiles were compared to a
full simulation without sorting cells, ∆t = 1 µs and s = 1.

system size, and random fluctuations in the initialization of the simulated particles
are more pronounced at low Nsim. Figure 5.9 illustrates the influence of s on the
simulated profiles. χ2

ν leaves the 95%-interval at a scaling factor of 10. At this point,
there are only 800 K and 2200 Dy particles left in the simulation, which is already a
coarse sampling of the Boltzmann distributions. Furthermore, with increasing s,
the size of σ approaches the spatial system size, leading to the effects described in
Sec. 5.1.2. For s = 5 the profiles are not distinguishable from the full simulation,
while there is still roughly a 25-fold speedup in computation time. For larger spatial
system sizes with more atoms, larger values for s should be possible.

5.2.3 Effects of Experimental and Physical Parameters

For a more involved analysis of the effects of parameters like mass, in-trap size,
particle number etc., we now look at the behavior of the central fraction. To illustrate
the effect of the scanned parameter, simulations were carried out on resonance and
with no interaction, with the the other parameters as in Tab. 5.1. A comparison
of the non-interacting simulations with Eq. (5.35) serves as another check of the
initialization and propagation methods. Each data point was simulated 10 times,
with the error bars indicating the standard deviation.

From Eq. (5.35), it is clear that the mass ratio and the trap frequency ratio, which
both enter in the in-trap size σr, will influence CK in the non-interacting case.
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Figure 5.10: CK depending on the ratio of trapping frequencies. The vertical dashed line
indicates the frequency ratio in the experiment.

However, since a change in σr influences the number density and therefore the
collision rate, they will also have an additional effect on CK in the interacting case.

For Fig. 5.10, the ratio of trap frequencies ωK/ωDy was scanned, with all other
parameters used as in the experiment. CK follows the non-interacting theory below
a frequency ratio of 1. At this point, the initial size of K is about twice the size of
Dy, which means that from the start, many atoms are already outside the influence
of the Dy atoms. As a result, first, fewer atoms can actually be slowed, and second,
the collision rate and therefore the drag force in the center is reduced. The higher
the frequency ratio, the smaller the initial size of K, which means that more atoms
will experience the stronger slowing effect. CK then grows roughly linearly with
ωK/ωDy, as the K cloud gets immersed into the Dy cloud more and more. In
the experiment, ωK/ωDy = 3.6 (indicated by the dashed line), corresponding to
σr,K = 0.56 σr,Dy, which explains most of what we see in the experiment.

In Fig. 5.11, the mass of the second species (K) was scanned, once for a trap
frequency ratio of 3.6 as in the experiment, and once with the trapping frequency
of the second species adjusted as ωK = ωDy

√
mDy/mK. In this way, σr is equal for

both species and the effect of the mass on the expansion is isolated. In comparison,
the effect of the trapping frequency on σr is substantially higher than the effect of
the masses on both σr and σv, as can be seen at the vertical dashed lines, which
corresponds to the mass ratio used in the experiment. For higher mass ratios, in
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Figure 5.11: CK depending on the mass ratio. To differentiate the effect of the mass on
the initial size σr and the initial mean velocity v0, ωK was adjusted such
that σr is equal for both species. In comparison, in the experimental case of
ωK = 3.6 ωDy, the difference to the non-interacting case is much higher.

the size-matched case, there is almost no difference in the expansion of the two
species to the non-interacting case. For lower mass ratios, the central fraction seems
to level off to a constant value. In contrast, in the case of a fixed frequency ratio, the
size of the light species becomes larger than the heavy one at ratios below about
0.08, leading to a vanishing slowing effect.

As the number ratio also influences the density and therefore collision rate, we
scanned the number of Dy atoms (see Fig. 5.12). With more Dy atoms than K atoms,
CK is behaving close to a power law and recovers the non-interacting behavior only
at a very large imbalance of K atoms. In this case, there are just not enough Dy
atoms to provide sufficiently many collisions to slow down the large number of K
atoms.

In conclusion, the trapping frequency ratio and therefore the initial size ratio is
the most influential, however the other parameters have to be chosen accordingly to
see a pronounced effect in the experiment. Since the mass ratio can not be chosen
freely, in extreme cases such as the Dy-Li mixture, it is important to tune the other
parameters accordingly.
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Figure 5.12: CK depending on the number ratio with other parameters as in the experiment.
The vertical dashed line marks the number ratio used in the experiment.

5.2.4 Aspect Ratio Inversion

Another hallmark of hydrodynamic behavior is the inversion of the aspect ratio of
the clouds in asymmetric traps [43, 79, 177]. In our experiment we did not observe
this effect due to the trap being almost spherically symmetric. In the simulations,
this effect can be reproduced when the starting samples are created with varying
σr in x, y and z directions, which corresponds to different trapping frequencies in
these directions.

The left side of Fig. 5.13 shows the evolution of the aspect ratio ϵ = rx,y/rz

during expansion for an interacting and a non-interacting mixture. The initial
aspect ratio of the trap was ωz/ωx,y = 1/5. In the non-interacting case, the aspect
ratio approaches unity for long expansion times, as the cloud is thermalized in
all directions. In contrast, in the interacting case, the aspect ratio is inverted as a
result of the redistribution of kinetic energy to the axis with the largest density
gradient. The maximum value of ϵK = 1.11(3) is different from the value of 2.44
expected from hydrodynamic scaling theory [178, 179], probably because the density
drops during expansion, which causes the mixture to transition to the collisionless
regime. To tackle this issue in an experiment with rubidium, a two-phase model
was developed with a mean-field approach in Ref. [177], where the expansion is
described by a hydrodynamic expansion followed by a collisionless expansion. But
since the situation of this single-species experiment is different to our two-species
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Figure 5.13: Left side: evolution of the aspect ratio of potassium during expansion for a
non-interacting mixture (dashed blue line) and on resonance (solid red line).
Right side: dependence of the aspect ratio on the scattering length after 16.7 ms
of expansion. The red circle marks the result for the data shown as solid
line on the left side and the dashed line indicates the theoretical result for a
non-interacting mixture.

case, where the mass imbalance affects the expansion speed and the initial in-trap
sizes of the two species, the model is not directly applicable to our situation.

5.3 the effect of R∗

So far, the simulations were carried out with the unitarity-limited cross section as
in Eq. (5.8), which is a good description in the case of entrance-channel dominated
Feshbach resonances such as the 217-G resonance. However, as described in Chap-
ter 3, a fourth parameter R∗ is necessary to fully describe the interaction in the case
of a closed-channel dominated resonance. Under certain conditions, the resulting
effects can have an impact on the accuracy of the experimental data, but can also
be turned to an advantage.

5.3.1 Shift of the Resonance Center

In the case of closed-channel dominated resonances, the cross section takes the
form

σ =
4π

( 1
a + R∗k2)2 + k2

. (5.37)

The position of the maximum of σ is then shifted away from the resonance center,
to a detuning on the attractive side, where a = −1/(R∗k2). In a recent publica-
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Figure 5.14: Behavior of the K central fraction after hydrodynamic expansion near a
resonance with R∗ = 643 a0. The red line shows a Lorentzian fit, the dashed
line indicates the resonance pole, where the scattering length diverges.

tion [151], we were able to characterize several other Feshbach resonances at lower
fields. Among those, a resonance at 7.29 G is particularly interesting for us, as it
combines accurate magnetic tunability and a universally interacting regime. With
the help of a measurement of the binding energy of Feshbach molecules on the
repulsive side, we can extract the value of R∗ to be 643(30) a0.

As in Chapter 4, we used hydrodynamic expansion and thermalization measure-
ments to identify the pole of the resonance. The observed hydrodynamic expansion
data was again compared to the Monte Carlo simulation, both with and without
including R∗ in the cross section. Figure 5.14 shows the simulated effect of R∗ in the
hydrodynamic expansion. The peak position of the slowing effect on K is shifted
towards negative scattering length. Furthermore, the feature becomes slightly asym-
metric. As a result, the Lorentzian model used for fitting does not agree well with
the data, but it indicates a shift of the center position to a ≈ −8.0(3) × 103 a0.
In the experiment, this amounts to a shift of about 3 mG, which is roughly the
level of magnetic field stability that we currently achieve. However, with other
combinations of R∗ and absolute width of the resonance, this effect should be kept
in mind, since it could lead to a sizable disagreement in the results for the pole
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position obtained with other methods, such as measurements of the binding energy
of the molecular state.

5.3.2 Increased Thermalization Rate

Another effect caused by R∗ can manifest itself when considering thermalization
between two species. While the unitarity-limited cross section is greatly reduced for
high-energy pairs (i.e. pairs with a high relative velocity), R∗ can in turn enhance
the cross section for a certain velocity class of pairs with

k∗σ =
1

R∗

√
−R∗

a
− 1

2
. (5.38)

Subsequently, the energy-dependent scattering rate features a resonance at

k∗Γ =
1√
6R∗

√√√√−2R∗

a
− 1 +

√
1 +

4R∗

a
+

(
4R∗

a

)2

. (5.39)

Since R∗ is fixed by the resonance, the value of k∗Γ can be tuned by varying a. It
could be desirable to tune k∗Γ in such a way that the scattering rate for high-energy
pairs is substantially enhanced, especially in situations, where many atoms of one
species are used to sympathetically cool few atoms of another species.

In the second mixture experiment in the Grimm group, known as the FeLiKx
experiment, large samples of fermionic lithium are used to sympathetically cool
either 40K or 41K, in order to prepare cold Fermi-Fermi or Fermi-Bose mixtures. In
the case of the bosonic potassium isotope, the details of the experimental sequence
are described in Ref. [140]. The evaporation is carried out utilizing the resonance
between the first and third spin state of Li [180, 181], with scattering lengths
aLi,Li ≈ −635 a0 and aLi,K ≈ 60 a0. The low interspecies scattering length leads to
comparatively long thermalization times, and therefore long evaporation sequences.
When evaporating the sample close to the interspecies resonance later used in the
experiment [140, 182], aLi,K could be tuned to achieve faster thermalization. The
question arose to what extent the resonance’s value of R∗ = 2241 a0 influences the
thermalization dynamics.

Figure 5.15 shows a test of such a scenario in the case of a Li-K mixture. For
this simulation, a similar setup as in Section 5.1.2 was used, with NLi = 3333,
NK = 1000, TLi = 100 nK and TK = 280 nK chosen to reflect the conditions
in the experiment. The thermalization time τ was then extracted by fitting the
model in Eq. (5.30) to the data. This was done once with R∗ = 0 and once for
R∗ = 2241 a0 [140, 183]. Figure 5.15 shows the variation of τ in both scenarios, and
the ratio of these thermalization times with a. Around −6000 a0, thermalization
happens faster, by up to 30% in the narrow-resonance scenario, whereas in the
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Figure 5.15: Upper panel: thermalization times in the attractive regime for a narrow
resonance with R∗ = 2241 a0 and a broad resonance with R∗ = 0. The lower
panel shows the ratio of the thermalization times for narrow (τR∗ ) and broad
resonances (τ0).

weakly interacting regime, the difference is negligible. In the universally limited
regime, thermalization is slightly slower, although the effect is comparable to the
error bar.

The question arises, if faster thermalization can be attributed to only an overall
increase of scattering rates. The upper panel of Fig. 5.16 shows the ratio of scattering
rates of the two scenarios. In the region around −6000 a0 the scattering rate is
increased by up to 25% for the narrow resonance, whereas for higher scattering
lengths it is slightly decreased. As the 25% higher scattering rate is not enough to
fully account for the 30% reduction in thermalization time, we turn to the mean
energy transfer per collision.

According to Eq. (5.29) we can extract the mean energy transfer per collision in
the simulation

⟨∆E⟩sim =
3
2

kB (TK − TLi)
NKNLi

NK + NLi

1
τΓC

(5.40)

from the measured values for the thermalization time τ and scattering rate ΓC.
The data is shown in the lower panel of Fig. 5.16, normalized to the theoretical
value ⟨∆E⟩ = ξkB (TK − TLi) of Eq. (5.26). In the low-energy limit (|ka| < 1), the
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Figure 5.16: Evolution of the ratio of the scattering rates (upper panel) and energy transfer
per collision (lower panel) over the scattering length for a narrow (blue) and a
broad resonance (red). The average energy transfer per collision was extracted
from the measured values of τ and ΓC and then normalized to the theoretical
result for ⟨∆E⟩ (see text). Dash-dotted lines indicate the theoretical values in
the low-energy (1) and in the universal regime (1/2), respectively

simulation recovers the theoretical value, whereas in the unitarity regime (|ka| > 1),
the mean energy transfer per collision drops to half of that value [175, 184]. Since
the increase of the scattering rate in the narrow-resonance scenario comes from
a selective promotion of collisions with certain energies, ⟨∆E⟩sim is also modified.
For this particular scenario, the mean energy transfer per collision is increased
by up to 10% in the region around −4000 a0, which, together with the increased
scattering rate, explains the 30% reduction in thermalization time. Even though
the statistical variation in this data set does not allow for a clear statement, this
behavior is consistent with a Monte Carlo evaluation of the integral in Eq. (5.3)
multiplied with ∆E [129, 184].

In conclusion, in this particular case, the thermalization rate is enhanced by up to
30% due to the narrow nature of the resonance, which is a small gain compared to
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the improvement over three orders of magnitude when going from the background
scattering length to close to resonance. At the scattering length of −6000 a0 the
maximum of the scattering rate is shifted from 1.71 vr for the broad resonance to
1.93 vr for the narrow resonance, a relatively small shift. By going further away from
the resonance center, the maximum can be shifted to even higher velocities, which
might be beneficial when (forced) evaporative losses are present as in the FeLiKx
experiment. In this case it could be possible to prevent losses of high-energy atoms
of the hot minority component through enhanced thermalization. Evaporation
dynamics have been modeled with DSMC simulations [163], but exceed the scope
of this thesis.

5.4 possible extensions and limitations of the model

So far, systems were studied in free-space or in a homogeneous trapping potential
with infinitely hard walls. However, the algorithm can be extended to work also in
an arbitrary trapping potential V. Furthermore, it would be possible to modify the
collision process to include quantum statistics. Here, we discuss possible extensions
and limitations of the model, for example at dense conditions.

5.4.1 Harmonic Potentials

To include other trapping potentials, the calculation of the first simulation step is
replaced with an appropriate numerical method to solve the differential equation
of motion. In the Dy-K experiment, the trapping potential is generated from optical
dipole traps with a Gaussian beam profile. As a good approximation, in the central
region the potential takes the form

Vi(r) =
1
2

miω
2
i r2, (5.41)

where ωi is the angular trapping frequency per species. To solve the classical
equations of motion of the particles in an external potential, the velocity Verlet
algorithm [185] has been used in MD and DSMC schemes. The propagation of r(tn)

and v(tn) to tn+1 = tn + ∆t is done according to

v(tn+1/2) = v(tn)−∇V(r(tn))∆t/2m

r(tn+1) = r(tn) + v(tn+1/2)∆t

v(tn+1) = v(tn+1/2)−∇V(r(tn+1))∆t/2m.

(5.42)

The Verlet integrator is a symplectic integrator, which means that it conserves energy
and the volume in phase space, which will become especially important when
quantum statistics are considered. The global error for r and v is of order O(∆t2).
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Figure 5.17: CoM motion of Dy and K without interactions when starting the simulation
with a finite CoM velocity.

Here we have assumed an isotropic trap, but the simulation can be generalized to
different trapping frequencies in three directions.

The easiest way to verify the correct behavior of the integrator is to look at the
sloshing mode in the non-interacting mixture. In this case, the collision integral is
0, and we are left with the second order differential equation for the motion in the
trapping potential for each particle, which can be solved analytically. The sloshing
mode is also used in real experiments to characterize the trapping potential, as
it does not depend on intraspecies interactions. Fig. 5.17 shows the CoM motion
of the two species, when the cloud is given a finite uniform CoM velocity at the
start. The simulation reproduces the uncoupled sinusoidal oscillations, which are
the analytic solution to the uncoupled harmonic oscillator differential equation,
quantitatively very well. Furthermore, if a breathing mode is excited, this would
hint at a problem with the initialization of position and velocity of the particles.

5.4.2 Collision Rate and Species Separation

A second check of the correct behavior in the trap can be done by comparing the
measured scattering rate to the theoretical scattering rate

ΓC = nσvr. (5.43)

In the case of a harmonic trap, the overlap integral takes the form

n =
∫

nKnDyd3r =
NKNDy(

2π
(

σ2
r,K + σ2

r,Dy

))3/2 . (5.44)

Interestingly, what we find here is qualitatively different from what we saw in the
box potential. As can be seen in Fig. 5.18, for a dilute gas and the low-energy cross
section σ = 4πa2,7 the simulated scattering rate agrees well with the theoretical

7 Note that here the low-energy cross section was used to be able to easily recognize problems with the
simulation. The universal cross section will be limited by the relative momentum of collision pairs,
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prediction, whereas for dense gases, Γsim/ΓC drops proportionally to (a/r̄rel)
−3.

This behavior is the same, whether the collisions were only counted without actually
changing the particle’s velocities, or if the velocities were also modified. As in the
case of the box trap before, we assume that this is in part due to the scattering
length exceeding the sample size, as well as an effective limitation of the scattering
rate by the blocking time. Evidently, the simulation, as well as the theoretical
prediction of the scattering rate, loose their validity here, however, quantum effects
become relevant anyways when the scattering length approaches the inter-particle
distance. These strongly correlated systems should be treated with other theoretical
descriptions.

Figure 5.18: Behavior of the simulated collision rate depending on the ratio of scattering
length a to mean relative distance r̄rel. Blue shows a full simulation, whereas
for the points in red, only the collisions were counted without changing the
velocities of the colliding particles.

In the intermediate regions, however, the simulations performing the full collision
exhibit a strong reduction of the collision rate that is not present in the counting
case. This suggests that the collisions alter the atomic distribution f far away from
its equilibrium value. We check this by looking at the evolution of the number
of collisions Nc(t) and the radial profiles at different times during the simulation.
Figure 5.19 shows an example at a scattering length of 9.5 × 104 a0. At the start
of the simulation, after the initialization of the equilibrium atomic distribution

which makes the identification of problems more difficult in some cases, as the radius of the cross
section depends on the individual particles, and some effects are smeared out in the thermodynamic
average.



5.4 possible extensions and limitations of the model 75

according to Boltzmann statistics, the scattering rate is close to the case where
we only count collisions for a few ms, after which Nc(t) flattens. Coincidentally,
the radial distribution of the particles changes, concentrating K in the middle of
the trap with an outer shell of Dy. After 15 ms the clouds have fully separated,
with a distance roughly equal to

√
σ/π, the diameter of the interaction spheres.

From this point on, the scattering rate settles to a constant value much smaller than
the theoretical prediction. We assume that this is a result of the reduced spatial
overlap and non-thermal velocity distribution. In this case, the sample cannot
be described by the uncorrelated equilibrium distributions f anymore, and the
Boltzmann equation fails to make accurate predictions.

Figure 5.19: Evolution of the number of collisions Nc with time (upper panel), and the
radial profiles of Dy (blue) and K (red) at different points in time (lower panels).
The gray shaded area indicates

√
σ/π at the scattering length of 9.5 × 104 a0

used in this simulation, which matches the separation of the two species.

This species separation can be understood in terms of a competition between
the trapping forces and the interspecies interaction, which is repulsive in the hard
sphere model. Since K experiences a much stiffer trap in this scenario (ωK/ωDy =

3.6), it is concentrated in the center, whereas Dy is expelled to the outer regions. The
separation breaks down if

√
σ/π becomes larger and pushes Dy further outside to

a point where the restoring force of the trap overcomes the interaction, at which
the collision rate recovers the values obtained by only counting collisions. This
behavior can be reversed by changing the trapping frequencies of the two species to
a point where σr,K > σr,Dy. Note again that this was carried out using the low-energy
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cross section with a large value of the scattering length. With a temperature of
the sample of T = 0.5 µK, we are well into the unitarity regime, where the cross
section is limited by the relative momentum. Using the unitary cross section will
lead to a similar effect of changing the overlap, but will smear out the borders of
the separation, therefore making it harder to identify the mechanism limiting the
scattering rate.

Although a similar species separation has been observed and extensively studied
with two BECs [186, 187], where the ratio of inter- to intraspecies interactions deter-
mines the (im-)miscibility of the mixture, the promoting intraspecies interactions
are not present in our simulation. This hints at a fundamental problem either with
the hard sphere interaction picture itself or our treatment of it. Although here the
low-energy cross section was used to make this effect more visible, the same effect
happens, to a lesser extent, when using the universally limited cross section. Since
in this case the effective scattering length depends on k and is different for each
pair, the separation is more washed out.

This behavior starts to appear in a regime, where Pauli blocking should prevent
the formation of the dense core. Indeed, models that include quantum statistical
effects [165] and mean-field potentials [174] do not show such a behavior in
trap. However, the collision model employed in these works computes the closest
approach of two colliding particles before the collision and allows the particles to
penetrate the hard sphere.

5.4.3 Collective Oscillations

In the case of non-zero interspecies interaction, we expect that oscillations can be
excited by the momentum transfer between the two species. If one species is given
a kick, the collisions should excite some oscillation also in the other species. The
response of the system depends on the number of collisions per oscillation period.

In the so-called collisionless regime, only few collisions happen during a full
oscillation period, which will transfer only some small amount of momentum.
The trapping potential then forces the species to oscillate with their own trapping
frequency. This can be seen in the upper left panel of Fig. 5.20. In this case, both
species will oscillate at their respective trapping frequency.

When the collision rate per atom ΓC becomes much bigger than ω, this is called
the collisional hydrodynamic regime.8 The atom is colliding so often that the
trapping force can not lead to an oscillation with the bare trapping frequency.
Instead, the two samples oscillate locked together, with a new combined frequency
different from the trapping frequencies. This can be seen in the lower left panel in

8 It should be noted that hydrodynamic behavior is also present in a superfluid, where it is not a result
of the high collision rate, but the long-range order in the one-body (bosons) and two-body (fermions)
densities [111].
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Fig. 5.20. In the hydrodynamic regime, the motion can be described by solving the
hydrodynamic equations with a scaling Ansatz [188], arriving at a coupled mode
frequency

ωh =

√√√√NKmKω2
K + NDymDyω2

Dy

NKmK + NDymDy
. (5.45)

In the case of equal numbers of atoms for both species and our standard trapping
frequencies of ωDy = 2π × 120 Hz and ωK = 3.6 ωDy, we calculate ωh = 2π ×
220.6 Hz, which is reproduced by the simulation.

Between the collisionless (ω ≫ ΓC) and the hydrodynamic regime (ω ≪ ΓC),
there is a crossover which features strong damping of the oscillations. Theoretically,
collective oscillations throughout the crossover have been studied by solving the
Boltzmann equation with different techniques, including Monte Carlo methods [165,
189, 190] or the method of averages [189]. By employing a linearization of f and
a relaxation time approximation [191], a set of coupled differential equations can
be obtained, with which the different modes and also the crossover regime can be
studied.

Interestingly, it was found that the behavior of the system can also be modeled
by extending the harmonic oscillator differential equations for the center of mass
position of the two gases with a phenomenological friction term that couples the
two systems via their velocities [192–194]:

x′′Dy = −ω2
DyxDy −

Fd

NDymDy

x′′K = −ω2
KxK +

Fd

NKmK
.

(5.46)

The drag force Fd takes the form [194]

Fd =
4
3

mKmDy

mK + mDy
nσvr︸ ︷︷ ︸

α

(
x′Dy − x′K

)
, (5.47)

where n =
∫

nKnDyd3r is the overlap integral. The hereby defined coefficient α

depends on the collision rate and therefore the interaction strength between the
two species, and has a dimension of mass per time. This phenomenological model
reproduces the result of Ref. [192] in the case of equal mass and atom numbers for
the two species.

A comparison of the simulation and the phenomenological model with matched
parameters can be seen in Fig. 5.20, with the value for γK/ωK extracted from
the simulated scattering rate. In the collisionless (upper panels) and the hydrody-
namic regime (lower panels), the two approaches agree very well. However, the
aforementioned species separation (see Sec. 5.4.2) strongly influences the behavior
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in the intermediate regime (middle panels). Initially, the scattering rate is high
enough to exhibit a locked but strongly damped oscillation that closely matches
the phenomenological model, but the separation slowly starts to form. After about
0.01 s the overlap is significantly reduced, leading to a lower collision rate, while
the value of γK/ωK drops from 14 to 1. This results in a decoupling of the two
oscillations, while the phenomenological model maintains a locked oscillation with
strong damping.

Figure 5.21 shows the spectrum of the center of mass position of K obtained
by solving Eq. (5.46) for different values of α. As can be seen, in the collisionless
regime where α is small, K only exhibits a very small oscillation at its own trapping
frequency, excited by very few collisions with Dy. In between, the motion of the two
species is strongly damped, as indicated by the width of the spectra. Figure 5.22
was obtained from the simulation and qualitatively shows the same behavior, even
in the intermediate regime. However, because of the problems associated to the
scattering rate and the species separation, a quantitative comparison, especially
with regards to the interaction strength and drag force, is outside the scope of this
thesis.
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Figure 5.20: Example traces of Dy (blue) and K (red) CoM motion in the collisionless,
intermediate and hydrodynamic regime (top to bottom), obtained from the
simulation (left side) and differential equation in Eq. (5.46) (right side). The
parameters for the differential equation were hand-matched to fit the behavior
of the simulation.



80 monte carlo simulations for hydrodynamic mixtures

Figure 5.21: Fourier spectra of the K center of mass motion for different values of α. The
red dashed line indicates the position of the highest frequency component.
The right side shows spectra at specific values of α indicated by the dashed
lines on the left. Vertical dashed lines in the spectra indicate the position of the
trapping frequencies ωK and ωDy.

Figure 5.22: Simulated spectra for the K center of mass motion with varying interaction
strength.
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5.4.4 The Effect of Quantum Statistics

As we have seen now, many of the interesting phenomena appear at or close
to regimes where quantum statistics are relevant. In the initial measurements of
hydrodynamic expansion for the characterization of the Feshbach resonances, the
clouds were only near-degenerate, and the level of degeneracy decreases as the
clouds expand. As a result the current model without accounting for quantum
statistics is a good approximation. As the experimental apparatus evolves, and a
more deeply degenerate regime becomes accessible, the model should be extended
to include quantum statistics.

In general, this can be done by extending the collision operator to [195, 196]

Icoll( fi, f j) =
∫

d3vj

∫
dΩ

dσ

dΩ
∣∣vi − vj

∣∣ [ f ′i f ′j (1 ± fi)(1 ± f j)− fi f j(1 ± f ′i )(1 ± f ′j )
]

.

(5.48)
The (1 ± f ′i )(1 ± f ′j ) term includes the effect of Bose-Einstein (+) or Fermi-Dirac
(−) statistics and enhances or prevents scattering in already occupied phase space-
regions, respectively. When assuming that quantum statistical effects do not play
any role, which is a reasonable approximation for our system in the expansion, the
form of Icoll( fi, f j) reduces to Eq. (5.3).

Solving the quantum collision integral requires knowledge about the phase-
space density f ′ of the final state after the collision. Different methods have been
implemented [163, 165, 197–199] to estimate f ′ from initial parameters or the test
particle distribution, however, some require very high numbers of particles [200] to
avoid errors from numerical fluctuations, which further increases the complexity
and computation time of the simulations. Furthermore, for an in-depth study
of collective oscillations it might be necessary to include an additional effective
mean-field potential in the propagation of particles as well as in-medium effects in
the scattering amplitude [174, 201].

5.4.5 Summary

This simulation was initially developed to better understand the data acquired by
the experiment. After gaining good agreement between simulation and experiment,
the model was subsequently extended to account for different starting parameters,
and the calculations were refined to speed up the computation. The largest effect
was obtained by sorting the atoms into cells for collision detection similar to the
DSMC approach. The following careful check of the method in situations where an
analytic description is available revealed its strengths and weaknesses.

The model works well with dilute gases or free-space systems without external
confinement, and provides a simple tool to gain understanding of the experiment,
e.g. the expansion of an interacting sample. However, modeling the atoms as hard,
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impenetrable spheres leads to problems in the case of dense samples, and it seems
to not be sufficient anymore to only consider two-particle interactions. As discussed
already, usually other methods are used for describing gases in such conditions, for
example the mean-field approach, which can also account for n-body interactions.
The hard sphere model can lead to nonphysical behavior, which should be kept
in mind when choosing the parameters of the simulations. At this point it should
also be noted that the closest-approach technique [165] and the DSMC method do
not suffer from this problem. Indeed, it has been shown that DSMC methods can
also work for regimes where the mean free path is much shorter than the relevant
length scales of the system [159].

Since more sophisticated simulation models and theoretical frameworks already
exist that avoid or properly address these problems, the extension of our approach
seems unnecessary at this point. As a simple model to quickly gain a basic un-
derstanding of phenomena appearing in the experiment (e.g. the effect of the R∗

parameter) it works reasonably well, but for more thorough analysis, a collaboration
with theory groups will be more fruitful.
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F L AT A N D A R B I T R A RY P O T E N T I A L S F O R AT O M
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Experimental profile of a flat-top beam.





6
M O T I VAT I O N

In many cases, the particular realization of the trapping potential for the atoms is a
key ingredient determining the possible success of the experiment. This chapter
gives a short introduction to optical trapping, why control over the trapping
potential is desired in our experiment, and which particular geometries we are
interested in.

6.1 trapping techniques

For neutral atoms, three different interactions can be used for trapping, which
differ in their properties and area of application [202]. Traps relying on absorption-
emission cycles of photons often form the first steps in an experimental sequence.
They operate on wavelengths close to atomic transitions and have a strong trapping
effect that can be more than 1000 times stronger than gravity, allowing them to
capture even hot samples. However, the photon recoil from the re-emission process
prevents cooling to low temperatures, and radiation trapping and light-assisted
inelastic collisions limit the achievable density, making it hard to reach degenerate
conditions with these traps [203–205].

Magnetic traps utilize the interaction of the atom’s magnetic dipole moment
with a magnetic field. High-field seeking atoms will move towards a maximum in
magnetic field strength, whereas low-field seeking atoms move towards a minimum.
Inhomogeneous fields with local minima can be generated easily with wire coils
or permanent magnets, and this technique was therefore predominantly used in
the early years of ultracold atomic physics [206]. However, the internal atomic
state determines the coupling to the magnetic field and therefore the magnitude
and sign of the trapping force (high-field or low-field seeking). Additionally, the
trapping geometry is limited by the possible arrangements of coils or permanent
magnets.

Optical dipole traps, the third option for trapping neutral atoms, usually operate
at wavelengths further away from atomic transitions. The trapping force results from
the electric dipole interaction of the atom with the light field. The corresponding
potential energy of an atom in a light field of angular frequency ω is then given by

V(r, ω) = −2πa3
0

c
α̃(ω)I(r). (6.1)

The geometry or shape of the potential V is governed by the shape of the intensity
distribution I(r), which can be controlled to some extent.

85
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The magnitude of the potential is influenced by α̃(ω),1 the real part of the
dynamical polarizability (DP) of the atom. The polarizability is a measure of the
ability of the electronic shells to rearrange in an external oscillating field, which
therefore develop an electric dipole that couples to the field and changes the
potential energy of the atom. It is in general strongly dependent on ω and its
shape is determined by the atom’s electronic transition spectrum and the atom’s
internal state. For positive values of α̃(ω), the atom will seek areas with high
optical intensity I(r), and vice versa for negative values, which allows for great
flexibility and tailored potentials. As we will see later, under the right conditions
the polarizability can even be independent of the particular sub-state of the atoms,
which allows for experiments studying the sub-state dynamics. For a sufficient
detuning from an electronic transition, the absorption processes will be suppressed,
but there will still be a significant dipole interaction. This greatly reduces the
heating of the atomic sample and offers ideal conditions to reach low temperatures
and to conduct experiments on the timescale of seconds. These properties have
made optical dipole traps an ubiquitous tool in the field of ultracold atoms.

6.2 atomic polarizability

In quantum mechanics, the atomic polarizability operator is described as a 3 × 3
tensor α⃗

⃗

[207], and the Hamiltonian in dependence of the electric field E is written
as

H = −1
2

E†α⃗
⃗

E. (6.2)

In some cases it is sufficient to consider only the diagonal terms of the 3 × 3 tensor
to describe the atom-light interaction. This is then known as the scalar contribution,
which is dominating especially for alkali atoms and far away from any atomic
transitions. However, an anisotropy in the atom’s electronic structure is expressed
by the off-diagonal entries, which can be separated into a vectorial and a tensorial
contribution.

When considering an atom in a state with orbital angular momentum quantum
numbers J and mJ in a field with intensity I(r) = ϵ0c

2 |E (r)|2, then the potential can
be written in the separation [208]

V(r, ω) =
−1
ϵ0c

I(r)
[

αs(ω) + |u∗ × u| cos θk
mJ

J
αv(ω)

+
3m2

J − J(J + 1)

J(2J − 1)
×

3 cos2 θp − 1
2

αt(ω)

]
.

(6.3)

1 In this representation, α̃(ω) is defined as the dimensionless real part of the dynamical polarizability
normalized to the atomic unit of polarizability.
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Here u stands for the polarization vector and θk (θp) denotes the angle between
the propagation (polarization) axis of the field and the quantization axis. This
leads to three polarizability coefficients for scalar (αs), vector (αv) and tensor (αt)
contributions, which can be calculated as

αs(ω) = − 1√
3(2J + 1)

ℜ
(

α
(0)
J (ω)

)
αv(ω) =

√
2J

(J + 1)(2J + 1)
ℜ
(

α
(1)
J (ω)

)
αt(ω) =

√
2J(2J + 1)

3(J + 1)(2J + 1)(2J + 3)
ℜ
(

α
(2)
J (ω)

)
.

(6.4)

The complex polarizability α
(k)
J (ω) can be calculated by applying the sum-over-

states approach and is given by

α
(k)
J (ω) =

√
2k + 1 ∑

J′
(−1)J+J′

{
1 1 k

J J J′

} ∣∣〈J′
∥∥d
∥∥ J
〉∣∣2

×1
h̄

(
(−1)k

ωJ,J′ − i
ΓJ′
2 − ω

+
1

ωJ,J′ − i
ΓJ′
2 + ω

)
.

(6.5)

This is a summation over the contribution of all transitions to states J′, with a
reduced dipole transition element |⟨J′ ∥d ∥ J⟩|2, where ωJ,J′ = (EJ′ − EJ)/h̄ is the
transition frequency between states with energies EJ , and ΓJ′ denotes the natural
line width of the excited state. The curly brackets indicate the Wigner 6-j symbol
that incorporates the dipole selection rules.

As we have seen, the trapping potential relates to the real part ℜ of Eq. (6.5),
whereas the off-resonant scattering rate relates to the imaginary part ℑ. Considering
a laser frequency ω far away from the resonance frequency of a single transition,
i.e. |ωJ,J′ − ω| ≫ ΓJ′ , their dependence

ℜ
(

α
(k)
J (ω)

)
∝

2ωJ,J′

ω2
J,J′ − ω2

ℑ
(

α
(k)
J (ω)

)
∝ ΓJ′

ω2
J,J′ + ω2(

ω2
J,J′ − ω2

)2

(6.6)

shows that a large detuning is beneficial to keep the scattering rate low, while still
retaining a trapping effect.

A few special cases of Eq. (6.3) and (6.5) have to be considered. Firstly, in the
case of linearly polarized light, the vectorial contribution vanishes. Secondly, as for
alkali atoms in their ground state, where the orbital angular momentum J = 1/2,
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Figure 6.1: Calculated scalar polarizability of the K and Dy ground states, with data
from [94, 210, 211]. Divergences in the polarizability appear at atomic transitions.
Finite peak values are because of sampling errors. Blue (red) shading represents
a mostly repulsive (attractive) interaction.

the tensor light shift vanishes, unless the detuning is on the order of the hyperfine
splitting [207]. For other species, e.g., dysprosium, the tensorial contribution can
be comparable to the scalar contribution. Thirdly, it is possible to reformulate this
description in terms of the total angular momentum quantum number F, however,
the difference is negligible for detunings larger than the hyperfine splitting [208].
Fourthly, the scaling terms in front of the vectorial and tensorial contributions
in Eq. (6.3) are state dependent with mJ . This can be used for example to drive
non-linear spin dynamics [209].

In our experiment, we focus on the case of linearly polarized light and atoms in
the stretched state (mJ = J). We define

α̃(ω) = α̃s(ω) +
3 cos2 θp

2
α̃t(ω) (6.7)

as the dimensionless real part of the total dynamical polarizability normalized to
the atomic unit of polarizability, with α̃s and α̃t the real parts of the scalar and
tensorial contributions in the same normalization. Within a hyperfine manifold, α̃s

and α̃t only depend on the wavelength.
Figure 6.1 shows a theoretical calculation of α̃s for the K and Dy ground states in

the range between 300 and 1100 nm. It is dominated by the broad transitions at 767
and 770 nm for K and 421 nm for Dy, however, the complex electronic arrangement
of Dy results in many narrower transitions, and therefore a more complicated
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structure of the polarizability. A standard wavelength for trapping is 1064 nm,
as for most atoms this is far away enough from any transitions to avoid sizable
scattering rates, while α̃(ω) is still positive and large enough, and high-power
lasers are readily available. That being said, over the typical tuning range of these
lasers the ratio of polarizabilities of the two species remains almost constant at this
wavelength, which limits the versatility of the experiment. However, with enough
knowledge of the electronic structure, other wavelength ranges suitable for dipole
trapping can be identified. For the combination of K and Dy, a blue detuning
(repulsive interaction) for both species is possible below the 421 nm transition of
Dy and the 405 nm transition of K, but generating enough optical power is difficult
in this wavelength range. Another possibility is to use a wavelength close to and
blue detuned to a Dy transition in the range between 450 and 767 nm. In this region
the K polarizability is dominated by the D1 and D2 transitions and negative.

6.3 harmonic potentials and exotic phases

As already mentioned, the geometry or shape of the potential V is a direct result of
the shape of the intensity distribution I(r). In general, I(r) can be chosen freely and
shaped to some extent with some effort, however, most lasers and optical elements
generate beams with a Gaussian intensity profile, which is a solution to the paraxial
Helmholtz equation. Therefore, most dipole traps are realized by a Gaussian laser
beam, which gives a confinement that is approximated very well around the center
of the beam by a harmonic oscillator with potential energy

V(r) =
1
2

m
(

ω2
xx2 + ω2

yy2 + ω2
z z2
)

(6.8)

in all three directions. Here, m is the mass of the atom and ωx,y,z is the angular
trapping frequency in the three directions. While this technique has been exten-
sively used and refined throughout the last decades, the resulting potential often
does not fit most manybody systems, e.g., condensed matter systems, which are
usually uniform to some extent. In contrast, the density of a thermal gas in a har-
monic trap has a Gaussian shape, as can be derived from the Maxwell-Boltzmann
distribution. For fermionic gases below the Fermi temperature TF, the local density
approximation (LDA) can be used to estimate the density profile as

n(r) =
1

6π

(
2m
h̄2

)3/2

[µ − V(r)]3/2 , (6.9)

where µ is the chemical potential. It is derived from the assumption that in a small
(local) region of the trap, the density can be viewed as constant, as long as the
potential is slowly varying. It is clear that for a harmonic potential, the density will
exhibit a r3-behavior, meaning that the density will vary over the sample, locally
changing the thermodynamic properties.
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Although many methods have been developed to extract relevant properties
from harmonically trapped gases, in some systems the confinement can alter the
physical phenomena to be studied. For example, as we have seen in Section 1.3, the
occurrence of exotic phases strongly depends on the polarization of the mixture.
Generally, in a harmonic trap, the polarization varies locally across the trap, which
corresponds to a line in the phase diagram. This can lead to different phases being
present at different areas in the trap, for example, in the case of a spin-imbalanced
mixture, a superfluid core and a partially polarized normal gas on the outside [66,
67]. In mass-imbalanced systems, where the polarizabilities of both species are
generally different, the varying local population imbalance could even lead to a
three-shell structure [212]. It is also proposed that a FFLO phase may exist at a
certain radius or narrow shell in the trap [213]. While this can be an advantage
because a broader phase space region can be probed at once, this also implies some
problems.

To detect phase separation, in-situ imaging is required to be able to measure the
polarization of the sample throughout the trap, because in time-of-flight imaging,
the spatial information would be washed out. This results in the need for a good
imaging system. To detect FFLO-type pairing in cold atom experiments, two
methods were proposed [214]. In the pair projection technique, Cooper pairs are
projected onto molecules, with which the total pair momentum can be determined
after time-of-flight imaging [49]. In the other technique, correlations in the shot noise
in time-of-flight images are studied [215]. While in the BCS case, the projected pairs
have zero net momentum, FFLO-type pairing would show up at non-zero values.
In the case of a uniform system, this leads to a pronounced peak in the projected
pair momentum distribution at a certain momentum with value q. However, as
in a harmonic potential the local atomic density and polarization both vary, the
value of q changes locally as well. Time-of-flight imaging effectively averages all
the different trap regions with changing q, leading to a smearing of the peak [216]
and rendering the detection of the elusive FFLO phase hard.

As another example, near second order transitions, where the correlation length
diverges, the LDA breaks down, which complicates theoretical descriptions [217].
On the more technical side, other measuring techniques that globally probe the
system similar to time-of-flight imaging, such as Bragg, Rabi and Ramsey spec-
troscopy, also suffer from the mixing of signals from several trap regions with
different densities and thermodynamic properties [217].



6.4 box traps and arbitrary potentials 91

6.4 box traps and arbitrary potentials

Many of the aforementioned problems can be avoided by studying uniform systems
experimentally, instead of relying on the well-tested Gaussian traps. As we still
need to trap atoms in order to study them, box shaped potentials of the form

V(r) =

0 r < rb

Vb r ≥ rb

, (6.10)

can be used. A box with radius rb has a barrier of height Vb, which prevents the
atoms to travel out of the trapping region. At the same time, Eq. (6.9) shows that
n(r) will be homogeneous in the central part of the box, circumventing many of
the aforementioned problems.

Recently, many different techniques have been studied to achieve uniform trap-
ping potentials in one to three dimensions. These involve, among others, time-
averaged potentials, and beam shaping using holographic methods or amplitude
masks with both red- and blue-detuned light. For an in-depth discussion of these
techniques and experimental results obtained by using them, we point to two recent
reviews [217, 218].

Beam shaping techniques have also been employed to realize other arbitrary
potentials in cold atom experiments [218, 219]. These include the generation of
tweezer arrays for quantum simulation [220], the preparation of the atomic den-
sity in a quantum simulator to realize a Fermi-Hubbard antiferromagnet [221],
or the engineering of potentials to study transport phenomena with ultracold
fermions [222].

As another interesting aspect, time averaged laser beams have been used to
compensate gravity for cold atoms [223]. By modulating the position of the beam,
an optical potential with a linear gradient along the direction of gravity was
generated. With the right choice of α̃ and I0, the effect of gravity on the atoms
can be canceled. Such a technique is even more desirable in the case of mixtures
of very different atomic species, like Dy and K in our case. The standard way to
levitate atoms is to generate a linear magnetic gradient in the magnetic field B in
z-direction,

∂B
∂z

=
mg
|µ| , (6.11)

which depends on the magnetic moment µ and the mass m of the atom. Naturally,
to levitate two species at the same value of the gradient, their ratio |µ|/m has to be
equal, a condition that is rarely realized since µ is only tuneable by changing the
atomic state. However, using an optical linear gradient, the condition now changes
to α̃/m being equal for both species, which can be met by changing the wavelength
of the laser. The optical levitation method has another advantage, especially for
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systems with highly magnetic atoms, as for example Er and Dy. The Feshbach
spectrum of these systems is very dense and also features very narrow resonances.
As a result, it is important that the magnetic field is stable on the mG level to
avoid heating of the sample and artificial broadening of narrow features. Magnetic
levitation can add another source of magnetic noise to the system, which can
become a problem if the hardware is not designed well enough. Furthermore, Dy
exhibits a very chaotic Feshbach spectrum, where narrow features can be as small
and as close together as a few mG. The necessary gradient for levitation can be
large enough so that the field changes by a few mG over the extent of the sample,
which can also possibly lead to broadening of those narrow features [224]. In
general, because of the high magnetic moment of Dy, any problems with magnetic
fields (field stability, noise, inhomogeneity...) will have considerable impact on the
sample, which is why we want to avoid magnetic levitation.

6.5 contents of part iii

The main motivation of this part was to develop techniques for our experiment
to be able to produce arbitrary optical potentials, with a focus on flat traps for
homogeneous systems and optical levitation. Trapping two species simultaneously
requires that the sign of α̃(ω) is equal for both species, either attractively or
repulsively interacting with the light. However, other configurations can be used
to realize species selective control also with Gaussian beams, which can help to
realize superfluid conditions [225]. And as we have seen before in the case of
optical levitation, it can be interesting to be able to tune the ratio α̃K(ω)/α̃Dy(ω)

precisely to the mass ratio. However, this requires a detailed knowledge about the
spectrum of α̃(ω), so Chapters 7 and 8 will feature two publications, in which we
investigated α̃Dy(ω) at 1064 nm and around the dysprosium 626-nm resonance in
more detail.

The detailed knowledge of the polarizability enables us to realize red- and blue-
detuned dipole traps. To extend these traps from Gaussian to arbitrary intensity
profiles we have chosen an approach involving the direct imaging of a digital
micromirror device (DMD). In Chapter 9, I will describe the technical challenges
and considerations concerning the design of such a system, as well as the results
we were able to achieve in a test setup.



7
P U B L I C AT I O N : A C C U R AT E D E T E R M I N AT I O N O F T H E
D Y N A M I C A L P O L A R I Z A B I L I T Y O F D Y S P R O S I U M

Published as:

C. Ravensbergen, V. Corre, E. Soave, M. Kreyer, S. Tzanova, E.
Kirilov, and R. Grimm.

Phys. Rev. Lett. 120, 223001 (2018)

Author contribution: The author took a supporting role in the process of
acquiring and analyzing the data described in this publication as well as writing
the manuscript.

Changes with respect to the published version: Subsection headlines have
been added.

93

https://doi.org/10.1103/PhysRevLett.120.223001


94 publication : accurate determination of the dynamical polarizability

We report a measurement of the dynamical polarizability
of dysprosium atoms in their electronic ground state at the
optical wavelength of 1064 nm, which is of particular inter-
est for laser trapping experiments. Our method is based on
collective oscillations in an optical dipole trap, and reaches
unprecedented accuracy and precision by comparison with
an alkali atom (potassium) as a reference species. We obtain
values of 184.4(2.4) a.u. and 1.7(6) a.u. for the scalar and
tensor polarizability, respectively. Our experiments have
reached a level that permits meaningful tests of current
theoretical descriptions and provides valuable information
for future experiments utilizing the intriguing properties of
heavy lanthanide atoms.

7.1 introduction

The dipole polarizability is a quantity of fundamental importance in light-matter
interaction, as it characterizes the linear response of a neutral particle to an electric
field. The polarizability is related to other important physical quantities, like the
van-der-Waals dispersion coefficient, and its knowledge is of great relevance for
a deep understanding of many-electron systems, for example in heavy atoms,
molecules, and clusters [226]. The static polarizability characterizes the response to
a constant electric field by a single real number. The dynamical polarizability (DP)
describes the response to an oscillating field and is represented by a complex
frequency-dependent function. Naturally, the DP is much richer and contains much
more information on the properties of a particle, in particular on its resonance
behavior. While various different methods have been established to measure the
static polarizability with high accuracy [227, 228], measurements of dynamic po-
larizabilities are notoriously difficult. Accurate laser-spectroscopic methods only
provide access to differential polarizabilities, whereas other methods like deflection
from a laser beam suffer from the problem of characterizing the interaction region
well enough.

In the realm of ultracold atoms, both the real and imaginary part of the DP play
an essential role for controlling the external and internal atomic degrees of freedom.
The imaginary part is related to the absorption and scattering of light. The real
part gives rise to Stark shifts, which are primarily utilized for constructing optical
dipole traps [202] in a wide range of different geometries. Zero crossings of the
DP, which occur at tune-out wavelengths, can be used to engineer species-selective
traps [229]. Optical lattice clocks operate at a so-called magic wavelength, where
the differential DP between the two relevant atomic states vanishes [230]. The DP
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also enables coherent spin manipulation, which is the basis of many spin-orbit
coupling schemes [231].

The optical manipulation of ultracold magnetic lanthanide atoms has attracted
considerable interest [87, 120, 121, 232–237]. Their exceptional magnetic properties
arise from a partially filled, submerged 4f shell. They feature a very rich atomic
spectrum, including narrow optical transitions, and a large orbital angular momen-
tum gives rise to substantial non-scalar contributions to the polarizability. These
special properties make magnetic lanthanide atoms excellent candidates to imple-
ment advanced light-matter coupling schemes, such as spin-orbit coupling [126,
238], and to realize novel regimes of quantum matter. The electronic configuration
makes advanced calculations of the DP very challenging and interesting [239–
244]. To benchmark theoretical models, measurements are highly desirable with
uncertainties on the percent level. Experimental results have been reported for dys-
prosium [120, 245, 246], thulium [241, 244] and erbium [247], in the latter case also
demonstrating the anisotropic nature of the DP. However, all these measurements
have been subject to large systematic uncertainties, imposed by the methods at
hand.

In this Letter, we report on the accurate determination of the real part of the DP
of a magnetic lanthanide atom at a wavelength of particular interest for cooling and
trapping experiments. We investigate dysprosium atoms and utilize an idea often
applied in precision metrology, performing a measurement relative to a known
reference. As a reference species, we use potassium atoms, for which the DP is
known on the permille level, and measure the trap frequencies of both species
in the same single-beam optical dipole trap (ODT). The frequency ratio is then
independent of major experimental systematics and imperfections. In a further set
of experiments, we determine the tensor contribution to the DP.

7.2 dynamical polarizability

The interaction of atoms with the electric field E⃗ of laser light is described by
the Hamiltonian H = − 1

2 E⃗†α⃗

⃗

E⃗, where α⃗

⃗

is the dynamical polarizability tensor
operator [207]. The energy shift for a given quantum state corresponds to the
optical trapping potential and is

U(r, ωL) = −2πa3
0

c
I(r)α̃(ωL), (7.1)

where ωL is the laser frequency, I(r) the position-dependent intensity, a0 the Bohr
radius, and c the speed of light. Here we define α̃(ωL) as a dimensionless quantity
corresponding to the real part of the DP of the quantum state of interest in atomic
units (1 a.u. = 4πϵ0a3

0, where ϵ0 is the vacuum permittivity). For a Gaussian laser
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beam, the central region (trap depth Û) can be approximated by a harmonic
potential. The corresponding radial trap frequency

ωr =

√
4Û

mw2
0
=

√
16a3

0
c

P
w4

0

α̃(ωL)

m
(7.2)

is determined by the laser beam parameters (power P and waist w0) and atomic
properties (polarizability α̃ and mass m) [202].

The DP can generally be decomposed into the three irreducible contributions α̃S,
α̃V , and α̃T (scalar, vector, and tensor polarizability), with weights depending on
the angular momentum quantum numbers and the polarization of the trapping
light. In our work, we focus on the elementary case of linearly polarized light and
atoms in a stretched state 1, where we can decompose α̃ into

α̃(ωL) = α̃S(ωL) +
3cos2θ − 1

2
α̃T(ωL); (7.3)

here θ is the angle between the polarization axis and the quantization axis, the
latter being defined by the magnetic field. Note that within a hyperfine manifold
α̃S and α̃T only depend on the wavelength.

The usual method to measure the dynamical polarizability in an ODT [120,
241, 244, 245, 247] is to determine the trap frequency ωr by observing collective
oscillations in a trap with a given power P and a well-defined waist w0, and to
use Eq. (7.2). A major complication arises from the strong dependence α̃ ∝ w4

0.
An accurate determination of w0 at the position of the atoms is crucial, but very
difficult to achieve in practice. In addition, any aberrations from an ideal Gaussian
beam are not accounted for. Moreover, a real cloud with its finite spatial extent will
experience some anharmonicity, which will alter the measured oscillation frequency.
The combination of these systematic problems typically limits the accuracy of such
DP measurements to a few 10% [247].

The above limitations can be overcome by referencing the trap frequency of the
particle of interest (or state [248]) to a species with a known polarizability [249, 250].
Figure 7.1 illustrates the situation for two species in the same optical trapping field,
where different potential depths result from the different polarizabilities. Within
the harmonic trap approximation, the DP of the unknown species, in our case Dy,
is then obtained as

α̃Dy = α̃K
mDy

mK

(
ωDy

ωK

)2

, (7.4)

where α̃K is the polarizability of the reference species (in our case K), and mDy/mK

is the known mass ratio. Experimentally, one only has to measure the frequency

1 Angular momentum projection on the quantization axis equals plus or minus the total angular
momentum (|mJ | = J)
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UDy(r)

UK(r)

Figure 7.1: Schematic illustration of the species-dependent optical trapping potential U
filled with potassium or dysprosium atoms in a beam with a Gaussian profile.
Here, in the ideal case, the ratio T/Û is equal for the two species, the atoms
explore exactly the same region in the trap, and thus experience the same
anharmonicity and beam aberrations.

ratio ωDy/ωK, which eliminates the need to determine w0 or P. This scheme also
removes the effects of anharmonicity provided that the ratio of the temperature
to the trap depth is the same for both species. In this ideal case, illustrated in
Fig. 7.1, the two thermal clouds fill exactly the same region in the trap, and thus
experience the same relative effect of anharmonicity. Introducing another species
with a different mass may lead to a different gravitational sag and thus to a shift of
the frequency ratio. This effect, however, can be suppressed by using a sufficiently
deep and tight trap.

7.3 experimental setup

In our experiments, we use the isotopes 164Dy and 40K, with a mass ratio mDy/mK

= 4.102. For trapping we use the standard near-infrared wavelength of 1064.5 nm.
At this wavelength the polarizability of potassium is α̃K = 598.7(1.1) [210, 251]2.
Based on the available theory values for Dy [239, 242], we can estimate α̃K/α̃Dy ≈ 3.2
and ωK/ωDy ≈ 3.6.

We produce a thermal cloud of either 164Dy or 40K atoms in a single-beam
ODT. For dysprosium, we employ a laser cooling and trapping scheme similar to
Refs. [96, 237]. After loading the ODT and some evaporative cooling, we typically
trap 106 atoms, spin-polarized in Zeeman substate |J = 8, mJ = −8⟩, at about 8
µK. For potassium, after a sub-Doppler cooling stage [252] which also enhances
ODT loading, we have 3 × 105 unpolarized 2 atoms at ∼30 µK. The trapping
laser (Mephisto MOPA 18 NE) operates on a single longitudinal mode, is linearly

2 At 1064.5 nm the polarizability of potassium is without any significant tensor contribution
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polarized, and its power is actively stabilized. All measurements reported here are
performed with P = 2.5 W, w0 ≈ 30 µm, and a magnetic field strength of 250 mG.

We measure the trap frequencies by exciting a CoM oscillation, the so-called
sloshing or dipole mode. In a harmonic potential, this mode does not involve a
compression of the cloud and the frequency is thus not affected by the interactions
within the cloud or by its quantum statistics [253]. We excite a pure radial sloshing
oscillation by displacing the trap position abruptly in the vertical direction using an
acousto-optic modulator. The displacement amounts to approximately 2 µm, which
is smaller than the in-trap radial cloud size of about σr = 6 µm. After a variable
hold time we switch off the trap and perform standard TOF absorption imaging.
The cloud position is extracted from the images by performing a one-dimensional
Gaussian fit to a vertical slice taken from the central part of the elongated trap.
Both species are imaged using the same optical path and camera.

A typical measurement run for both dysprosium and potassium is shown in
Fig. 7.2. The magnetic field is chosen to be parallel to the polarization of the
trapping light (θ = 0), and therefore from Eq. (7.3) we get α̃ = α̃S + α̃T. We fit the
oscillations with an exponentially damped sine wave to extract the frequency ωfit

and the damping time τ of the oscillation. The two species oscillate at different
frequencies because of their different mass and polarizability. By relative scaling
of the horizontal axes of Fig. 7.2 with the expected factor of 3.6 the oscillations
exhibit a nearly identical behavior. This already confirms that the theoretical values
of Refs. [239, 242] provide a good estimate for the Dy polarizability. The identical
damping behavior, with ωfitτ being the same for both species, is consistent with
our assumption that the main source of damping is dephasing resulting from the
trap anharmonicity 7.7.

7.4 systematic effects

The measured frequency ratio exhibits a residual anharmonicity effect. After trap
loading, plain evaporative cooling reduces the temperature to a certain fraction
of the trap depth. This effect is similar, but not exactly equal for both species. We
take this into account by a small correction to the dysprosium oscillation frequency.
For a given potassium temperature TK the corresponding dysprosium temperature
would be (α̃Dy/α̃K)TK. A deviation from this ideal value can be quantified by
∆TDy = TDy − (α̃Dy/α̃K)TK. The anharmonic frequency shift depends on the slope
β = dωDy/dTDy, which gives a corrected frequency ratio

ωK

ωDy
=

ωfit
K

ωfit
Dy − β∆TDy

. (7.5)

With this correction, Eq. (7.4) allows to determine α̃Dy/α̃K in an accurate way.
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Figure 7.2: Radial sloshing mode oscillation for potassium and dysprosium. The cloud
position after TOF is plotted against the hold time in the trap after the excitation.
We obtain ωfit

K /2π = 2140(10) Hz and ωfit
Dy/2π = 601(2) Hz, τK = 0.8(1) ms

and τDy = 2.9(1) ms. The temperatures are TK = 36(3) µK and TDy = 8.3(2) µK,
and the TOF is 0.3 ms for K and 2 ms for Dy. Note that the time scales for K and
Dy differ by a factor of 3.6. The error bars show the sample standard deviation
of five individual measurements at the same hold time.
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Figure 7.3: Anharmonicity effect on the trap frequency. The Dy CoM oscillation frequency
is plotted as a function of the cloud temperature. The weighted linear fit takes
both frequency and temperature errors into account, and for the displayed set
of measurement yields a slope β/2π = −5.1(7)Hz/µK.

In order to determine β, we vary the temperature of the dysprosium atoms
and measure the oscillation frequency. The temperature, determined by standard
TOF expansion, is changed by an evaporation ramp down to a variable trap
power followed by a re-compression to the standard power and a hold time for
thermalization. We observe a frequency decrease with increasing temperature,
as is shown in Fig. 7.3. From this set of measurements and a second one taken
under similar conditions (not shown in Fig. 7.3), we obtain the combined result
β/2π = −4.5(4) Hz/µK. Note that the anharmonicity shifts the measured Dy
frequency, for our typical temperatures and trap depth, by about 5% as compared
to the harmonic approximation of Eq. (7.2).

Possible remaining systematics affecting the frequency ratio could include
density-dependent interactions, the finite excitation amplitude, and the effect of
gravity. We do not observe a density dependence of the oscillation frequency of
Dy when varying the atom number over a wide range 7.7, confirming that the fre-
quency shift observed in Fig. 7.3 can be fully attributed to a change in temperature.
The frequency ratio should not be affected by the excitation amplitude, because,
for an equal amplitude, both species are affected in the same way. In addition, we
varied the excitation amplitude for a single species (Dy) and we did not observe any
significant shift for the amplitude used here. The estimated gravitational frequency
shift in our trap is ∼ 0.1% 3, which we neglect in our analysis. Moreover, we noticed
that the fitted frequency may slightly depend (on the subpercent level) on the time

3 The relative frequency downshift caused by the gravitational sag can be approximated by:
−2(g/w0ω2)2
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Figure 7.4: Repeated measurements of the frequency ratio ωK/ωDy, including small anhar-
monicity corrections. The two symbols (blue dots and green squares) represent
the data sets taken on two different days. The error bars include the fit errors of
the frequency measurements and all uncertainties in the anharmonicity correc-
tion. Because of the latter, the uncertainties are partially correlated, which we
properly take into account in our data analysis when combining the individual
results. The solid line marks the final result ωK/ωDy = 3.632(22), with the
dashed lines indicating the corresponding error range 7.7.

interval chosen for the analysis. To avoid systematic deviations in the comparison
of both species, we choose the time intervals to follow the scaling factor of 3.6. With
0-2.2 ms for K and 0-8 ms for Dy, the intervals then correspond to about twice the
respective 1/e damping time τK or τDy.

7.5 determination of the polarizability

We now turn our attention to an accurate and precise determination of the fre-
quency ratio ωK/ωDy. We measure the potassium and dysprosium CoM oscillation
frequency, in the same trap, in an alternating fashion to eliminate possible slow
drifts over time, and repeat this 10 times. The resulting frequency ratios, including
small anharmonicity corrections, are shown in Fig. 7.4. The data were taken on two
different days, which were one week apart, and the consistency shows the robust-
ness of the presented method. The differential anharmonicity effect from Eq. (7.5)
yields a small correction of about 1.4% and 2.2% for the frequency ratio of the two
data sets. The combined result for the frequency ratio is ωK/ωDy = 3.632(22); for
details on the error budget see 7.7.

In a second set of experiments, we measure the frequency ratio ω∥/ω⊥ for Dy in
a magnetic field parallel and perpendicular to the polarization of the laser field.
In this way, we can identify the tensor part which is expected to be more than
100 times smaller [242] than the scalar part. Here we perform in total 11 pairs
of measurements 7.7, alternating the angle θ between 0 and π/2. We obtain the
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combined result ω∥/ω⊥ = 1.0070(24), which significantly deviates from one and
thus reveals a tensor contribution.

From the measured frequency ratios and Eqs. (7.1-7.3), it is now straightforward
to derive the polarizability ratios (α̃S + α̃T)/α̃K = 3.217(40) and (α̃S + α̃T)/(α̃S −
α̃T/2) = 1.014(5). Solving for the scalar and tensor part and using the reference
value for α̃K, we finally obtain α̃S = 184.4(2.4) and α̃T = 1.7(6).

Our result for the scalar polarizability lies between the two theoretical values
of 180 a.u. [239] and 193 a.u. [242], being consistent with both of them within the
corresponding error estimates of a few percent [254, 255]. For the small tensorial
part, our result is consistent with the theoretical value of 1.34 a.u. [242].

7.6 discussion and conclusion

Already in its present implementation, the experimental uncertainty of our method
to determine the DP of a magnetic lanthanide atom is smaller than the uncertainties
of theoretical calculations. This, in turn, means that our new result already provides
a benchmark and sensitive input for refined theoretical calculations. In extension
of our work, much more information on the DP can be obtained by measuring at
other optical wavelengths [247], which is straightforward to be implemented exper-
imentally. Furthermore, experimental uncertainties may be reduced considerably
by using the well-defined environment of optical lattices instead of macroscopic
trapping schemes. Further advanced DP measurements could provide a wealth of
accurate information on the interaction of light with atoms that feature a complex
electronic structure, which would go far beyond the present state of the art.

The presented technique should also be largely applicable to the rapidly expand-
ing field of ultracold molecules [256, 257], where diatomic molecules combining
alkali and alkaline earth atoms are produced routinely in numerous labs. The
increased complexity of the molecular structure, relative to its atomic constituents,
renders the precise determination of the dynamic polarizability challenging. An-
other emerging field aims at direct laser cooling and trapping of more exotic
molecules [258, 259], with the benefit of a larger ground state electric dipole mo-
ment or applicability to precision measurements. In such systems sympathetic
cooling by ultracold alkali atoms [260, 261] or even by ultracold hydrogen has been
proposed [262] as a route to reach quantum degeneracy. In all of the above exper-
iments a spectroscopically well understood species exists either as a constituent
forming the molecule or as a coolant, naturally enabling reference measurements
of polarizability and other physical quantities.

In our future experiments, we are particularly interested in mass-imbalanced
Fermi-Fermi mixtures and possible new superfluid pairing regimes [70, 74, 150,
263–267]. For the combination of 161Dy and 40K and not far from our present
experimental conditions, a “magic" wavelength is expected to exist where the
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polarizability ratio for the two species corresponds to the inverse mass ratio. An
optical dipole trap operating at this particular wavelength would automatically
match the Fermi surfaces of both species after deep evaporative cooling. Based on
Refs. [239] and [242] for Dy and [210] for K, we would expect this wavelength to be
at 982 nm or 954 nm, respectively, and our present measurement suggests it to be
in between these two values. The precise location will be subject of further studies.

7.7 supplemental material

In Sections 7.7.1 and 7.7.2 we present measurements on Dy testing systematic
effects introduced by atomic density and temperature. Section 7.7.3 provides ad-
ditional information on our measurement of the tensor part of the polarizability
of Dy. Section 7.7.4 reviews the different contributions to the uncertainty on our
measurement of the polarizability of Dy.

7.7.1 Absence of Density Effect on Oscillation Frequency
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Figure 7.5: Test of the effect of atomic density on the oscillation frequency. The measured
frequency is plotted against the atom number. The solid line is a linear fit, and
the dashed line shows the 68% (1σ) confidence band.

Throughout our determination of the polarizability of Dy we assume that the fre-
quency of the CoM oscillations is independent of the atomic density, as is expected
in a harmonic potential. In this section we test this basic assumption by investi-
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gating the effect of density on our frequency measurements. We prepare samples
of largely different atom numbers and determine the frequency for the same trap
depth as used in the main text. The atom number is controlled through the MOT
loading time. We use a standard (reduced) loading time of 4 s (0.2 s), resulting
in a cloud of about 1.1 × 106(4.5 × 105) atoms. We measure alternately using one
loading time, then the other one, and repeat the procedure to eliminate the effect
of possible slow drifts. After each individual measurement the temperature of the
cloud is measured by TOF expansion. Based on these temperatures, the measured
trap frequencies are corrected to account for the effect of anharmonicity of the
trap, using the coefficient β defined in the main text. Note, however, that we do
not observe a significant correlation between temperature and atom number. The
results are presented in Figure 7.5. A linear fit gives a slope of 0.28(70)% per million
of atoms, which is consistent with the absence of a density effect. This confirms
our assumption of a density independence of the oscillation frequency on the level
of 1% for our standard experimental conditions.

7.7.2 Damping of Oscillations

In the main text we introduce the assumption that the damping of the CoM
oscillations originates essentially from the anharmonicity of the trap: Different
classes of atoms explore different regions of the trap as they oscillate, hence
experiencing slightly different trap frequencies and eventually dephasing. Such
a behavior would mean that the CoM oscillations that we observe result from a
superposition of pure single-particle oscillations. This assumption is supported
by the equal damping behavior of the two species, as pointed out in the main
text, and by an estimation based on our experimental settings of the collision rate
of dysprosium atoms, which yields 80 s−1 (a similar calculation for potassium
gives a collision rate of about 90 s−1). Given the radial trap frequency of about 600
Hz (2 kHz for K), the radial motion in our trapped samples is far away from the
hydrodynamic regime. Here we further test our assumption on the origin of the
observed damping by considering the density and temperature dependence of the
damping rate of the CoM oscillations.

From the analysis of the set of experiments presented in Sec. A we also obtain
the damping rate of the oscillations. Its behavior as a function of atom number is
plotted in Figure 7.6. A linear fit gives a slope of +0.008(30) s−1 per million atom
and thus does not show any significant density dependence on the 10% level for
our standard atom number. This observation supports our assumption of damping
being essentially due to dephasing effects.

We now turn our attention to the study of the dependence of the damping rate
on the temperature. From straightforward arguments, one expects the damping rate
to be proportional to the temperature. Indeed, for small oscillation amplitudes, the
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Figure 7.6: Density independence of the damping rate. The solid line is a linear fit, and the
dashed lines show the 68% (1σ) confidence band.

anharmonic frequency shift of a particle in a Gaussian potential scales linearly with
its energy, such that the width in Fourier space of the CoM oscillation increases
linearly with the temperature of the cloud, finally leading to a linear dependence of
the damping rate on the temperature. In the main text, we present a measurement
of the dependence of the frequency on the temperature of the cloud (see Figure 3
in the main text). The analysis of the corresponding oscillation data also allows us
to investigate the dependence of the damping rate of the oscillations on the temper-
ature. The results are shown in Figure 7.7. We observe an increase of the damping
with temperature. A linear fit without offset gives a slope of 0.409(15) ms−1µK−1,
and a reduced χ2 of 0.96, showing that our simple model fits well to the data. This
behavior also supports our interpretation on dephasing being the main source of
damping.
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Figure 7.7: Temperature dependence of the damping time. The solid line is a linear fit
without offset, with weights taking both horizontal and vertical error bars into
account.

7.7.3 Error Budget of the Frequency Ratio Measurement

We measure the trap frequency ratio in two sets of data obtained on two different
days. Each set of data is corrected for the residual anharmonicity, based on the
anharmonicity coefficient β and on the measured temperatures of the two species.
A part of the uncertainty originates from the statistical distribution of the measured
frequency ratios ωK/ωDy. The rest of the uncertainty originates from the error in the
anharmonicity correction and has five contributions: the error on the anharmonicity
coefficient β, and the error on the measured temperatures of the K and Dy clouds.
The respective contributions to the absolute uncertainty on ωK/ωDy are listed in
Table 7.1.

The total absolute uncertainty that results from the anharmonicity correction is
0.019, and the statistical uncertainty from the 10 combined individual measurements
is 0.012. These two errors are quadratically combined, which finally yields the
quoted uncertainty of 0.022.

7.7.4 Measurement of the Tensor Contribution

We measure oscillation frequencies for two different orientations of the magnetic
field: Always being perpendicular to the propagation axis of the trapping laser,
the field is either aligned with the polarization axis of the trapping laser, or
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Table 7.1: Error budget for the measurement of ωK/ωDy.

[p] parameter value uncertainty uncertainty

in parameter in frequency ratio

TDy set 1 8.3 µK 0.2 µK 0.003

TK set 1 7.6 µK 0.3 µK 0.004

TDy set 2 35.7 µK 3.2 µK 0.015

TK set 2 30.3 µK 2.0 µK 0.008

β −4.50 Hz/µK 0.43 Hz/µK 0.006
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Figure 7.8: Repeated measurements of the frequency ratio ω∥/ω⊥. The first five points
have been measured on one day, the remaining six ones on a second day. The
solid line shows the weighted average ω∥/ω⊥ = 1.0070(20) with the dashed
lines showing the corresponding statistical error range.
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perpendicular to it. All other parameters are kept identical. The strength of the
field is in both cases 250 mG. In the latter case we take care that the spin state
of the atoms adiabatically follows the rotation of the magnetic field. We measure
alternately the trap frequency for one orientation of the field, then for the other one,
and repeat the procedure to eliminate systematic effects from possible slow drifts.
We measure in total 11 pairs of trap frequencies over two different days, which
gives us 11 values for the frequency ratio, as shown in Figure 7.8. A weighted
average yields (as + at)/(as − at/2) = 1.0140(48).
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We report on measurements of the anisotropic dynamical
polarizability of Dy near the 626-nm intercombination line,
employing modulation spectroscopy in a one-dimensional
optical lattice. To eliminate large systematic uncertainties re-
sulting from the limited knowledge of the spatial intensity
distribution, we use K as a reference species with accu-
rately known polarizability. This method can be applied
independently of the sign of the polarizability, i.e., for both
attractive and repulsive optical fields on both sides of a res-
onance. By variation of the laser polarization we extract the
scalar and the tensorial part. To characterize the strength of
the transition, we also derive the natural linewidth. We find
our result to be in excellent agreement with literature val-
ues, which provide a sensitive benchmark for the accuracy
of our method. In addition we demonstrate optical dipole
trapping on the intercombination line, confirming the ex-
pected long lifetimes and low heating rates. This provides
an additional tool to tailor optical potentials for Dy atoms
and for the species-specific manipulation of atoms in the
Dy-K mixture.

8.1 introduction

Ultracold gases of submerged-shell lanthanide atoms (Dy, Ho, Er, Tm) have emerged
as novel platforms for exploring the exciting many-body physics of exotic states
of quantum matter under well defined and widely controllable conditions. The
intriguing properties of such strongly magnetic atoms result from long-range
anisotropic interactions in combination with tunability of the contact interaction.
Prominent examples for novel states of matter created in the laboratory are quantum
ferrofluids of Dy [236] and supersolids realized with both Dy and Er [97–99].
Progress has also been made with quantum-gas mixtures of different lanthanide
atoms (Dy-Er) [122, 268] and mixtures of lanthanide and alkali-metal atoms (Dy-
K) [105, 176], representing intriguing systems that offer wide potential for future
applications.

Submerged-shell lanthanide atoms offer a multitude of optical transitions, which
provide flexible tools for efficient laser cooling and trapping [90, 94–96] and which
open up a broad range of applications based on the optical manipulation of atoms.
Examples include optical pumping [269], the excitation of Rydberg states [270],
realization of spin-orbit coupling [126], atomic clock applications [271], quantum-
enhanced sensing [209, 272], and quantum spin models [273]. The wide range of
applications has motivated theoretical [239, 240, 242, 243] and experimental [120,
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124, 241, 244–247, 274] studies on the dynamic polarizability, which is the key
quantity that characterizes the strength of the atomic interaction with laser light.
Because of the complicated electronic structure accurate theoretical models are very
challenging and can be refined based on experimental data.

In our recent work [124], we introduced a method that greatly improves the
accuracy of measurements of the real part of the ground-state dynamic polarizabil-
ity based on optical dipole potentials [202]. The basic principle is a comparison
of the optical response of the species under investigation with the response of a
reference species to the same light field [249, 250]. As the key point, this method
eliminates uncertainties caused by the limited knowledge of spatial light intensity
distribution. In Ref. [124] we demonstrated a polarizability measurement for Dy
atoms with K atoms as a reference species by observing collective oscillations in
near-infrared light. However, such a collective-excitation scheme can be applied
only if the dynamical polarizabilities of both species are positive, i.e., if the laser
light attracts and traps the atoms. This limitation substantially reduces the optical
wavelength range where the method can be applied.

In this article, we introduce a more general scheme to measure the dynamical
polarizability, which relies on the same basic principle as introduced in Ref. [124]
but is independent of the sign of the polarizability. Instead of observing collective
oscillations of trapped atoms, we use modulation spectroscopy in an optical lat-
tice [275, 276], applicable for both attractive and repulsive light. As a case study,
we investigate the dynamical polarizability near the 626-nm intercombination line
of Dy, which is widely used for narrow-line laser cooling [96, 237] and which also
offers interesting possibilities for optical dipole trapping. A particular motivation
for the experiments pursued in our laboratory is the exciting prospect to realize
novel superfluid states in mass-imbalanced fermion mixtures [74, 114, 225], which
is the reason why we work with the fermionic isotopes 161Dy and 40K.

Our work is structured as follows. In Sec. 8.2, we describe the experimental pro-
cedures, including the preparation protocol and probing methods of the ultracold
gas in the optical lattice. In Sec. 8.3, we discuss our main results on the dynamical
polarizability of dysprosium for varying optical detunings and polarizations near
the 626-nm line. We then extract the contribution of scalar and tensorial compo-
nents and obtain the linewidth of the transition. In addition, we demonstrate dipole
trapping and measure the heating rate and lifetime in Sec. 8.4. In Sec. 8.5, we finally
summarize our results and give a brief outlook.

8.2 methods

In this section, we present the methods used to determine the dynamical polar-
izability of Dy near the 626-nm line. We start by summarizing the experimental
sequence to obtain an ultracold sample of either Dy or K atoms in the lattice
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(Sec. 8.2.1), after which we describe the methods to measure the lattice depth for
the two species (Sec. 8.2.2) and how we use K as a well-known reference to calibrate
our measurement on Dy (Sec. 8.2.3).

Figure 8.1: (a) Schematic of our experiment. The 1D optical lattice beam (OL) is overlapped
by the optical dipole trap (ODT) and imaging beam at the sample position.
The second beam of the crossed dipole trap propagates along the z direction
(direction of gravity) and is not shown here. The external magnetic field B⃗ is
aligned with the gravity axis, defining the polarization angle θ for the E⃗ field
of the lattice beam. θ can be changed by rotating a half-wave plate. (b) and
(c) Band structures of an optical lattice for Dy and K with a typical depth of
VDy = 30Er,Dy and VK = 5Er,K, respectively. Atoms are transferred if the photon
energy hν from the modulation matches the energy difference between bands
at a given quasimomentum q.

8.2.1 Sample Preparation

Our experiments begin with preparing spin-polarized degenerate Fermi gases
of 161Dy or 40K in an optical dipole trap, following procedures described in our
previous work [105]. For Dy, we rely on the evaporation of atoms in a single
spin state in a crossed optical dipole trap, taking advantage of universal dipolar
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collisions [89]. At the end of the evaporation, we are left with a typical atom
number of NDy = 2 × 104 in the absolute ground state |F = 21/2, mF = −21/2⟩.
The mean (geometrically averaged) trapping frequency is ω̄Dy/(2π) = 120 Hz,
and the sample is at a temperature of T/TF,Dy = 0.1, where TF,Dy is the Fermi
temperature of the trapped sample.

To produce degenerate samples of K, we load Dy and K together in the crossed
dipole trap. Since the trap is about 3.6 times deeper for K than for Dy [124] and the
sample is nearly thermalized, essentially Dy atoms get lost during evaporation, and
K is sympathetically cooled by Dy. After fully evaporating all remaining Dy atoms,
we end up with a pure sample of 40K in the ground state |F = 9, mF = −9/2⟩, with
NK = 1 × 104, T/TF,K = 0.2, and ω̄K/(2π) = 450 Hz.

The atoms are then adiabatically loaded into a one-dimensional (1D) optical
lattice generated by two counterpropagating, linearly polarized laser beams at
wavelength λ ≈ 626 nm with a beam waist w0 = 55 µm and a power P in the
range between 17 and 200 mW per beam. For normalization purposes, we define
a reference power of P0 = 67 mW. The lattice is superimposed with the crossed
dipole trap used for evaporation [see Fig. 8.1(a)]. The lattice beams are oriented
horizontally, and the quantization axis is defined by applying a small magnetic
field less than 1 G along the direction of gravity. We ramp up the lattice potential

Vi(r, ω) = −2πa3
0

c
α̃i(ω)I(r), (8.1)

where ω is the laser frequency, I(r) is the laser intensity at position r, a0 is the
Bohr radius, and c is the speed of light, in 200 ms to a certain lattice depth V̂.
As in our previous work [124], we define α̃i(ω) as the dimensionless real part
of the dynamical polarizability of atomic species i ∈ {Dy, K} normalized to the
atomic unit of polarizability. The optical lattice depth is typically expressed in
units of recoil energies Er,i = h2/(2miλ

2), where h is the Planck constant and mi
is the atomic mass. After loading, because of the deeply degenerate nature of the
samples, the atoms completely fill the ground band, and the fractional population
of the atoms in the excited bands is measured to less than 6%, which we verified
by a band mapping technique [277, 278]. We verified that ramping up the lattice
intensity and then ramping it down again are possible without significant heating
of the samples.

To mitigate the antitrapping effect when working with blue-detuned lattices,
we ramp up the dipole trap power simultaneously with the lattice to a trapping
frequency of ω̄Dy/(2π) = 190 Hz and ω̄K/(2π) = 700 Hz. This also helps us
reduce the differential gravitational sag that the two species experience, which
would result in a difference of about 5 µm in the vertical direction and therefore
also a difference in lattice intensity experienced by the atoms. The deeper trap
reduces the differential sag to about 1 µm.
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8.2.2 Measuring the Lattice Depth of 161Dy

In order to determine the lattice depth of 161Dy atoms, we perform amplitude-
modulation spectroscopy by sinusoidally varying the depth of the optical lattice
potential for 100 to 200 ms with a relative amplitude of about 5%. In this method,
the population initially filling the ground band (n = 0) is excited to the higher
bands by absorbing the photons resonant to the energy difference between bands
[see Fig. 8.1(b)]. Because of the curvature of the bands, only a specific class of
quasimomenta q is resonant with the excitation frequency and can be transferred
as the modulation frequency is swept [276]. The amplitude-modulation scheme
predominantly drives ∆n = 2 excitations because of parity conservation, coupling
the ground and second excited bands with frequency ν [275].

The superimposed dipole trap mixes all spatial dimensions so that transitions to
higher bands result in heating of the sample caused by the momentum being added.
The transition probability is dependent on q and has a maximum at the lower band
edge, where q = 0, and drops for larger q. We therefore expect a sharp increase
in cloud size when the modulation frequency matches the resonance condition,
En,q − Em,q = hν at q = 0. Here, En,q is the energy of a particle in the nth band
with quasimomentum q. To observe this effect, we ramp down the lattice (in about
2 ms), then switch off the dipole trap and measure the size of the atomic cloud
using standard absorption imaging after typically 5 ms of free expansion. We then
determine the size of the atomic cloud σ using a Gaussian fit.

Figure 8.2(a) shows a typical amplitude-modulation spectrum for the 161Dy atoms,
plotted as a function of the modulation frequency. The spectrum is fitted with a
Gaussian function σ(ν) ∝ e−((ν−ν0)

2/2∆ν2), where ν0 and ∆ν are fitting parameters,
indicating the frequency position of the lower band edge for the given lattice depth.
For each choice of the wavelength λ, the power of the lattice beams is set such
that the lattice for 161Dy is deep enough (more than 25Er,Dy) to generate flat bands.
Close to resonance, the power is kept low enough to avoid heating by photon
scattering. This narrows the spectroscopy signal and allows the use of a Gaussian
fitting function. The typical width of the n = 2 band in this regime is less than 7%
of the gap between the two bands. We obtain the depth of our optical lattice V̂Dy by
matching ν0 − ∆ν with the lower band edge calculated by a band structure model
for an infinite, homogeneous one-dimensional lattice. We define

sDy(λ) =
V̂Dy(λ, P)

Er,Dy

P0

P
(8.2)

as the power-normalized lattice depth in units of Er,i. Here, the power normalization
scales the lattice depth to the reference value P0. For the example in Fig. 8.2(a), we
obtain sDy = 57.9(2) at λ = 626.174 nm. The uncertainty given here represents the
statistical fitting error.
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Figure 8.2: Representative amplitude-modulation spectra for an optical lattice at λ =
626.174 nm. The atomic cloud size is plotted as a function of the modulation
frequency. (a) For 161Dy, at a power P = 33.5 mW, we obtain a lattice depth of
V̂Dy = 28.96(9)Er,Dy by matching ν0 − ∆ν, extracted from a Gaussian fit (solid
line), to the band gap. (b) For 40K the spectrum, taken at P = 67 mw, shows
an asymmetric profile due to the broad band structure. We take into account
systematic errors in the numerical simulation used to determine the lattice depth.
The fitted simulation (solid line) yields a depth of V̂K = 4.70(14)Er,K, which is
consistent with the depth of V̂K = 4.73(8)Er,K obtained from an arctangent fit
(dashed line). The errors given here represent the statistical fitting errors. The
systematic errors are much larger (see text).

8.2.3 Calibration Measurements with Potassium

For calibration purposes we perform a similar lattice depth measurement with
40K. After preparing the K sample in the lattice, we modulate the amplitude of the
lattice beam for 500 ms and image the atoms after 2 ms of time of flight. The laser
beam at λ = 626 nm is far detuned from the potassium transition lines, resulting
in an accurately known polarizability value of α̃K = −556(1) as a reliable reference
with negligible anisotropic contributions [210]. We checked that the K lattice depth
depends neither on the particular wavelength chosen close to the Dy resonance line
nor on the polarization angle. We also verified the expected linear scaling of the
lattice depth with the lattice power in a range between P0 and 3P0.

Figure 8.2(b) exhibits an example of an amplitude-modulation spectrum for 40K
at the reference power P0 = 67 mW. The cloud size as a function of ν shows a
pronounced asymmetry, pointing to the band edge near 66 kHz. Because of the
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relatively small value of α̃K at λ = 626 nm and the large recoil energy Er,K ≈ 4Er,Dy,
the lattice depth for the potassium atoms becomes small, which leads to a broad
band structure and therefore to a broader spectral response. The spectrum is further
broadened for various technical reasons 1, which makes the identification of the
exact location of the band gap at q = 0 difficult (see Appendix in Sec. 8.6). To
analyze the spectra, we use a combination of analytical fitting functions and a
numerical simulation based on q-dependent transition probabilities calculated
between the ground and second excited bands. The uncertainty in the identification
of the band edge leads to a systematic error, which we estimate to be 4%. With this
model, we deduce a 40K lattice depth of sK = 4.75(19) for the same conditions as
used in the 161Dy measurements.

Finally, the dynamical polarizability of the dysprosium atoms can be derived as

α̃Dy(λ) =
sDy(λ)

sK

mK

mDy
α̃K, (8.3)

which is the basis of our further analysis. While the main uncertainty arises from
the determination of the band edge, we have identified a second possible source
of systematic uncertainty. The spatial distributions of both species in the optical
lattice may differ, which leads to slightly different sample-averaged lattice depths.
We have modeled this effect by employing the same numerical simulation as used
for K also for Dy for a range of different experimental parameters. For the effect
of the spatial distribution on the determination of α̃Dy, we estimate a systematic
error of 3%, which together with the band-edge uncertainty of 4% adds up to a
total combined systematic error of 5%.

8.3 results

In this section we present the main results of our measurements of the anisotropic
polarizability of Dy and its variation with detuning across the 626-nm resonance.
Furthermore, we extract the natural linewidth of the transition.

8.3.1 Anisotropic Polarizability

The dynamical polarizability can be generally decomposed into scalar, vector, and
tensor parts [207, 208], which we denote α̃s, α̃v, and α̃t, respectively. The present
work employs linearly polarized lattice beams and, consequently, measures the
scalar and tensor contributions. The dynamical polarizability of an atom in the
stretched state can be expressed as a weighted sum of scalar and tensor components,

1 Stability of the lattice intensity, quality of the absorption imaging and general stability of the
experiment contribute to noise on the measurement. Furthermore, due to technical reasons, the lattice
depth is modulated already when ramping up the lattice.
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Figure 8.3: Measurements of anisotropic polarizability for 161Dy. (a) Angle dependence of
the polarizability at λ = 625.884 nm. The variation reveals the scalar and tensor
contributions. The solid line shows a fit according to Eq. (8.4). (b) Wavelength
dependence of the dynamical polarizability of 161Dy near the intercombination
transition line for two different polarization angles θ = 0, π/2 (parallel and
perpendicular to the quantization axis). The dashed line indicates the resonance
center. In (a) the error bars represent the 1σ statistical fitting errors from the
individual spectra used to determine the lattice depth. In (b) the error bars are
smaller than the symbol size.

α̃(ω) = α̃s(ω) +
3 cos2 θ − 1

2
α̃t(ω), (8.4)

where θ is the polarization angle defined with respect to the quantization axis
(see Fig. 8.1) and ω = 2πc/λ is the angular frequency of the laser field. In the
experiment, we scan θ by rotating a half-wave plate. The quantization axis is
determined by applying a small magnetic field less than 1 G along the direction of
gravity (see Fig. 8.1). We experimentally confirmed that our measurements remain
unaffected by an external magnetic field up to 10 G. In Fig. 8.3(a), we plot the
dynamical polarizability as a function of the angle θ. The measurement was carried
out at a fixed wavelength of λ = 625.884 nm, and the value of α̃Dy is derived from
the lattice depth, as discussed before. The variation of α̃Dy shows the expected
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mixing of the scalar and tensor polarizability, depending on θ. A fit according to
Eq. (8.4) gives α̃s = −1.37(1)× 103 and α̃t = 1.10(1)× 103 (1σ statistical fitting
errors). Here, at the specific wavelength chosen, the tensor component provides a
contribution to the total dynamical polarizability that is comparable to the scalar
component, generating the ratio α̃t/α̃s = −0.80(1). Figure 8.3(b) shows the total
polarizability for the two angles, θ = 0 and π/2, from which we obtain α̃s and
α̃t according to Eq. (8.4). We repeat the measurements for various detunings and
observe the variation of the absolute value of α̃Dy in a region of roughly 0.5 nm
around the resonance center. The sign follows from the fact that the light field
is attractive (α̃s > 0) for red detuning and changes sign on the blue side of the
resonance.

Figure 8.4 shows the final result for the resonance behavior of α̃s and α̃t. The
polarizability can be modeled with a resonance model

α̃(ω) = α̃bg + β
ω2

0

ω2
0 − ω2

, (8.5)

where α̃bg is a background contribution from other resonances, the parameter
β is defined as a dimensionless resonance strength, and ω0 = 2πc/λ0 is the
resonance center angular frequency. This model is applied to the data for both
α̃s and α̃t. In this case, we fit the data with a single-resonance model, although
three hyperfine resonances are actually present in the fermionic isotope in the
stretched state. Since the hyperfine splitting is small compared to the detuning [94,
279, 280], the deviation from the single-resonance model is negligible compared
to our experimental uncertainties. We confirmed this by fitting the data with a
corresponding extended model that takes hyperfine resonances into account.

Table 8.1 summarizes the fitting results. Notably, α̃s includes a background of
275(13), originating from other transitions, mostly the strong blue line near 421 nm.
In contrast, the background in α̃t is only 8(14), which is consistent with 0. The
off-resonant contributions from other lines essentially cancel each other in the
tensorial part. For the 626-nm transition, from theory describing the angular part
of a J = 8 → J′ = 9 transition [208, 210, 243], we expect a ratio between the tensor
and scalar parts on resonance of

r ≡ lim
ω→ω0

α̃t(ω)

α̃s(ω)
=

βt

βs
= −40/57 ≈ −0.7018. (8.6)

However, fitting the data with Eq. (8.5) yields a ratio of −0.643(4). We attribute
this deviation to a systematic error resulting from setting θ in our measurements
(see Appendix in Sec. 8.7). We note that the fit results for the resonance position
are inconsistent within the very small fit uncertainties. We attribute this minor
discrepancy to the fact that we model the contribution of other lines with a simple
constant offset α̃bg, thus ignoring the effect of a possible slope in the background.
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Table 8.1: Results for the resonance parameters α̃bg, β, and λ0 = c/ω0, obtained by fitting
Eq. (8.5) to our data sets for α̃s(ω), α̃t(ω), and the mean polarizability α̃0(ω)
according to Eq. (8.7). Numbers in parentheses give the 1σ fit uncertainties.

Data α̃bg β λ0 (nm)

α̃s 275(13) 1.055(3) 626.0808(5)

α̃t 8(14) -0.679(4) 626.0794(8)

α̃0 278(10) 0.885(3) 626.0850(4)

The exact value resulting for the fit parameter ω0 = c/λ0 may be sensitive to such
a slope. However, this minor inconsistency has no significant effect on the values
obtained for the resonance strength parameter β.

8.3.2 Determination of the Natural Linewidth

To avoid the effect of uncertainties in θ we introduce the mean polarizability

α̃0 =
α̃(θ = 0) + α̃(θ = π/2)

2
= α̃s +

1
4

α̃t, (8.7)

which turns out to be insensitive to small deviations of θ from the ideal values 0 and
π/2 (see Appendix in Sec. 8.7). We can fit α̃0 with the model introduced in Eq. (8.5);
the results can again be found in Table 8.1. Notably, we extract α̃bg = 277(13),
which is consistent with the offset on the scalar component given before. With the
definition of α̃0 we find the relation

β0 =
(

1 +
r
4

)
βs, (8.8)

which now includes the ratio r, fixed to a theoretical value of −0.7018. Our result
for the resonance strength β = 0.885(3) is now insensitive to systematic errors in
the angle determination and combines both sets of data for θ = 0 and π/2. With
this method, we are left with the dominant error being the 5% uncertainty in the
calibration of α̃Dy as discussed before.

We can now extract the natural linewidth

Γ =
2a3

0ω4
0

c3
2J + 1
2J′ + 1

β0

1 + r/4
(8.9)

of the closed J = 8 → J′ = 9 transition. We calculate a linewidth of Γ/2π =

(137.9 ± 0.4stat ± 6.9sys) kHz, which agrees well with transition probabilities ob-
tained by radiative lifetime measurements on atomic beams [211, 281, 282]. The
relative uncertainty is on par with the most precise measurement of the lifetime
of 1.17(3) µs [281], which corresponds to a natural linewidth of (136 ± 3) kHz.
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Figure 8.4: Measured (a) scalar and (b) tensor components of the dynamical polarizability
of 161Dy near the 626-nm line. Solid lines show a fit according to Eq. (8.5). Error
bars are smaller than the symbol size.

The agreement of our result with this benchmark of a direct lifetime measurement
on the level of a few percent also confirms that our indirect way to determine
line strengths via measurements of dynamic polarizabilities produces accurate
results. With an optimization of experimental parameters, the uncertainty in the
determination of the lattice depth of K, which is the source of the dominating
systematic error, could be reduced further.

8.4 demonstration of optical dipole trapping

In an additional experiment, we realize an optical dipole trap operating on the
626-nm transition and measure the lifetime and heating rate of the dysprosium
atoms. We set the laser wavelength to the red-detuned side of the resonance and
use one of the lattice beams, with the counterpropagating beam blocked. The
polarization angle is set to θ = π/2 to maximize the polarizability. By slowly
(within 100 ms) ramping down the power of the horizontal 1064-nm dipole trap
beam, we load the atoms into a bichromatic trap consisting of the horizontal 626-
nm beam and the vertical 1064-nm dipole trap beam, with an average trapping
frequency of ω̄/(2π) = 110 Hz. After a variable hold time, we record atom number
and temperature with standard time-of-flight imaging. Since the lifetime in the
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1064-nm dipole trap is two orders of magnitude larger than any other timescale of
the system, we consider only the heating effect originating from the 626-nm trap.

In Fig. 8.5, the time evolution of the temperature and atom number at λ =

626.334 nm are displayed. At this detuning, we measured the polarizability to
be α̃ = 1.97(8) × 103, which includes also a possible deviation from the ideal
angle θ = π/2. In the measurement, we ramp the laser beam power to 170 mW,
which results in a central intensity of I0 = 3.5 × 106 mW cm−2. We calculate a
central optical potential depth of U0 = −2πa3

0α̃I0/c = kB × 16 µK, and by taking
the gravitational effect into account, the potential depth is reduced to kB × 4µK.
Initially, we observe a linear increase of the temperature. A linear fit from 0 to
1 s yields a heating rate of 311(7) nK/s, which indicates a photon scattering rate
of about 0.8 s−1. The calculated photon scattering rate in the middle of the trap
is [202]

Rscatt =
Γ

h̄∆
U0, (8.10)

where we take our result for the linewidth Γ = 2π × 138(7) kHz and where
∆ = ω − ω0 is the frequency detuning. For our experimental parameters, we
calculate a scattering rate of Rscatt ≈ 1.5 s−1 in the center of the optical potential.
However, this model neglects that the atoms are spatially distributed in the trap
and sample areas with lower intensity than in the trap center. This effect is even
enhanced by the influence of gravity, which shifts the trap center out of the center
of the intensity distribution. Furthermore, there is a considerable uncertainty in the
measurement of the beam waist and therefore the value of I0. Considering these
effects, the observed heating is consistent with the expected photon scattering.

For longer hold times, the heating rate is observed to decrease. This might be
because the increased cloud size leads to a lower average intensity across the
sample and therefore a reduced scattering rate. Another explanation is that when
the temperature reaches about 500 nK, which is about a factor of 8 below the
trap depth, some evaporation may set in and counteract the heating. Indeed, we
observe an increased atom loss rate after 1 s of hold time [see Fig. 8.5(b)]. We use
an exponential fit from 1 s onward and obtain a lifetime of τ = 1.9(1) s.

The measurement shows that dipole trapping close to the 626-nm line with a
rather small wavelength detuning works as expected and provides an additional
versatile tool to tailor optical potentials for Dy atoms. In particular, this may be
interesting for species-selective dipole traps to manipulate mixtures of Dy with
other species and can be used to optimize conditions to obtain superfluid regimes
in Fermi-Fermi mixtures [176, 225].
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Figure 8.5: Time evolution of temperature and atom number in a bichromatic crossed
dipole trap. (a) Temperature in the x and y directions with linear fits for the
first 1 s (dashed vertical line). (b) Atom number and corresponding exponential
fit from 1 s onward.

8.5 conclusion and outlook

We have shown that the method introduced in Ref. [124] to accurately measure
the dynamic polarizability of an atom by comparison with a reference species can
be generalized to light fields that act repulsively. Using modulation spectroscopy
in an optical lattice, we investigated the 626-nm intercombination line of Dy and
measured the scalar and the tensorial part of the anisotropic polarizability in the
resonance region. As an important benchmark for our method, the line strength
derived from our polarizability measurements is consistent with previous mea-
surements of the natural transition linewidth. Our relative uncertainty of ∼5% is
already on par with the previous measurements and may be further improved by
further suppressing systematic effects. The method is of particular interest for char-
acterizing the multitude of optical transitions in submerged-shell lanthanide atoms,
which have become very popular in laser cooling and quantum gas experiments.

We have also demonstrated optical dipole trapping of Dy with laser light tuned
about 0.25 nm below the center of the 626-nm line. We found efficient trapping
with low heating, in quantitative agreement with expectations based on the line
strength derived from the polarizability measurements. This introduces optical
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dipole potentials generated by laser light tuned close to this intercombination line
as an interesting tool for future experiments.

For our particular goal to create a mass-imbalanced fermionic superfluid in
the 161Dy-40K mixture [105, 176], species-specific optical potentials [229] offer
alternative handles for control. On the blue side of the 626-nm resonance, the light
field will be repulsive for both species. This allows us to create boxlike trapping
schemes [283–285] for the preparation of homogeneous Dy-K mixtures. At a specific
detuning, the polarizability ratio will match the mass ratio, and an optical levitation
scheme [223] can be realized that compensates the effect of gravity for both species
simultaneously. In a harmonic trap, the phase diagram critically depends on the
trap frequency ratio of both species, as investigated theoretically in Ref. [225].
Species-specific optical potentials allow us to optimize the conditions for attaining
and observing the superfluid phase transition.

We thank M. Lepers for discussion. We acknowledge financial support from
the Austrian Science Fund (FWF) within Project No. P32153-N36 and within the
Doktoratskolleg ALM (Grant No. W1259-N27). We further acknowledge a Marie
Sklodowska Curie fellowship awarded to J.H.H. by the European Union (project
SIMIS, Grant Agreement No. 894429).

8.6 appendix a : lattice depth extraction for potassium

In general, the Hamiltonian of a lattice modulated with modulation frequency ν is
given by

H =
p2

2m
+ V cos(kxx)2 [1 + ϵ cos(2πνt)] , (8.11)

where ϵ denotes a small perturbation of the lattice depth and kx = 2π/λ is the
wavenumber of the laser in the x direction. The calculation of transition probabilities
between bands of this lattice follows Ref. [286]. According to Bloch’s theorem, the
eigenstates of the unperturbed system can be described in a plane-wave basis by

Ψ(n)
q (x) = eiqx ∑

K
c(n)K,qeiKx, (8.12)

where c(n)K,q are the Fourier coefficients to the reciprocal lattice vectors K in the n-th
band. Using Fermi’s golden rule, the transition probability between bands n and m
of an atom with quasimomentum q is given by

Wnm
q ∝ |∑

K
c(n)K,qc(m)

K,q (q + K)2|2. (8.13)

By numerically diagonalizing the Hamiltonian in Eq. (8.11), the coefficients c(n)K,q
can be found for all available reciprocal lattice vectors K, the energy gap between
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bands n and m can be calculated for a given q, and Wnm
q can be converted to

Wnm(ν). For the transition between bands n = 0 → m = 2, the resulting spectrum
W02(ν) exhibits a sharp edge on the lower-energy side, which corresponds to
atoms with q = 0. However, if the cloud width σc and lattice beam waist w0 are
comparable and if the cloud center position is offset from the center of the lattice
by rc, the effective lattice depth will vary over the extent of the cloud, effectively
smoothing out the sharp edge. In a numerical simulation we account for this by
slicing the atom distribution and calculating the transition probability with the
corresponding V(r) for each slice, where V(r) follows the Gaussian form of the
lattice beam. Each spectrum of the individual slices is then weighted according
to the atom distribution. In our experiment, the averaged transition probability
W̄02(ν) manifests itself in the spectrum derived from the cloud size after time of
flight σ(ν) ∝ W̄02(ν).

The value extracted for the lattice depth from such a profile depends on the
particular fit model. We use numerical simulations of W̄02(ν) with different param-
eters to test various fitting functions. The best agreement of the extracted lattice
depth with the simulation input is achieved with

σ(ν) = σ0 +

(
1
2
+

1
π

arctan
(

ν − ν0

δν

))
[k(ν − ν0) + A] , (8.14)

where ν0 marks the position where the cloud width increases by half of the ampli-
tude A. δν sets the width of the step, k sets the slope of the linear part above the
step, and σ0 is the cloud width below the band edge.

As a second method, we perform least-squares regression of the full numerical
simulation of the experimental profiles. For this we vary w0, σc, rc, V0, and a such
that the sum of the squares

∑
νi

[
σ(νi)− aW̄02(νi)

]2
(8.15)

across all measurement points νi is minimal. The effective lattice depth is then
extracted by integrating V(r) over the extent of the cloud. The results of the two
methods usually agree within less than 4%.

8.7 appendix b : systematic uncertainties from angle determina-
tion

To address the issue of the impact of uncertainties in the angle determination, we
rewrite Eqs. (8.4) and (8.7) as

α̃(θ) = α̃0 +
3
4

α̃t cos(2θ). (8.16)
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When measuring the polarizabilities α̃∥ and α̃⊥ for θ = 0 and θ = π/2, respectively,
angle deviations of δ∥ and δ⊥ will result in measured values with systematic offsets
corresponding to

α̃′
∥ = α̃0 +

3
4

α̃t cos(2δ∥) ≈ α̃0 +
3
4

α̃t(1 − 2δ2
∥),

α̃′
⊥ = α̃0 +

3
4

α̃t cos(π + 2δ⊥) ≈ α̃0 −
3
4

α̃t(1 − 2δ2
⊥).

(8.17)

When calculating the effect on the mean polarizability

α̃′
0 =

1
2
(α̃′

∥ + α̃′
⊥) = α̃0 +

3
4

α̃t(δ
2
⊥ − δ2

∥), (8.18)

it becomes apparent that the errors will (partially) cancel each other. In particular,
a systematic shift compared to the actual angles given by the magnetic field, such
that δ⊥ = δ∥, will cancel out completely. In contrast,

α̃′
t =

2
3
(α̃′

∥ − α̃′
⊥) = α̃t(1 − δ2

⊥ − δ2
∥) (8.19)

is more sensitive to errors in the determination of θ.





9
O P T I C A L P O T E N T I A L S H A P I N G W I T H A D M D

To realize uniform and arbitrary trapping potentials for the atoms with a high
flexibility, we employ a DMD in direct imaging configuration. I will start this
chapter with a short overview over possible light tailoring techniques and the
requirements for our experiment (see Sec. 9.1). A description of the setup along
with the employed techniques can be found in sections 9.2-9.4. The chapter will
be concluded with an overview of the results for uniform potentials and linear
gradients in sections 9.5 and 9.6.

9.1 preliminary considerations

In our experiment, we are mainly interested in large homogeneous traps to achieve
a uniform density distribution of the atoms. To choose the most suiting technique,
we try to estimate the uniformity quality that has to be achieved, and compare the
advantages and disadvantages of the different approaches.

9.1.1 Uniformity Requirement

We have seen in Chapter 6 that under the LDA, see Eq. (6.9), the density follows
the intensity distribution. In the case of a uniform intensity distribution, the density
profile is flat. However, in a realistic scenario, at the bottom of the trap there will
be a small residual modulation of the trapping potential caused by imperfections
in the generation of the beam profile, which we can model as

V(r) = V0 + δV(r). (9.1)

According to Eq. (6.9), the density is then given by

n(r) =
1

6π

(
2m
h̄2

)3/2

[µ − V0 − δV(r)]3/2 . (9.2)

At the trap bottom we can set V0 = 0 and for small fluctuations δV(r), we can
linearly expand to

n(r) = n0

[
1 − δV(r)

µ

]3/2

≈ n0

[
1 − 3

2
δV(r)

µ

]
. (9.3)
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For a zero temperature Fermi gas, the chemical potential is equal to EF. Because no
states above EF are populated, we can set the trap depth to Vb ≥ EF without losing
atoms. This means that the fluctuations in the density are given by

δn(r)
n0

= −3
2

δV(r)
Vb

. (9.4)

By requiring that the fluctuations should only be a few percent of n0, we can set a
limit on the variation of the beam profile in its flat part.

However, in a typical experimental scenario we can reach T/TF ≈ 0.1 − 0.2,
which means that the step at EF is smeared out and some states above EF are also
occupied. To avoid extensive plain evaporation from these states, we have to limit
EF to about 50% of Vb. In the end, we estimate that the relative error on the trapping
potential, and thus the intensity distribution, should be 3 times smaller than the
required relative modulation of the density profile.1

9.1.2 Techniques for Shaping the Intensity Distribution

The techniques to tailor the intensity distribution of light can be divided in three
main categories. Each of them has been used over the years in atom trapping
experiments, and has its advantages and disadvantages that have to be consid-
ered carefully to make the right choice given the requirements of the experiment.
Here, only a very brief overview is given, but an extensive discussion of different
techniques can be found in Ref. [218].

Accousto-optic modulators (AOMs) and deflectors (AODs) are typically used to
control total power and frequency of the laser light. This is achieved by employing
a radiofrequency field in a dielectric crystal that diffracts a passing laser beam.
The deflection angle, and therefore also the final beam position after an imaging
lens, depend on the driving frequency. By modulating the frequency faster than
all relevant atomic timescales, a temporally averaged trapping potential can be
painted, see Fig. 9.1(a). Alternatively, multiple frequencies can be used to generate
multiple beams, for example to generate an array of micro-traps. Generally, AODs
offer a high power efficiency and power threshold and therefore high trap depths,
however, they can also suffer from thermal lensing. Furthermore, they lack in spatial
resolution and do not perform well on larger features. The ability to produce 2D
patterns also requires the addition of a second AOD, which adds complexity.

The second option is Fourier imaging of a spatial light modulator (SLM). In this
case, a local phase modulation of the light is Fourier transformed to a corresponding

1 For a BEC, the lowest single particle state of energy E0 is macroscopically occupied, and the chemical
potential has to be smaller than E0. For small µ, the second term in Eq. (9.3) blows up, which means
that small deviations from a homogeneous potential lead to large variations in the atomic density.
The quality requirement for a BEC is therefore much higher than for a DGF.
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(a) (b) (c)

Figure 9.1: Three different techniques to generate a ring shaped potential. (a) Fast modula-
tion of the radiofrequency of a two-directional AOM paints a time-averaged ring
shape in the image plane. (b) Direct imaging of a ring shaped mask on a DMD
cuts away intensity of a Gaussian beam and leaves a ring shaped potential. (c)
An LC-SLM changes the phase information of a Gaussian beam in the Fourier
plane such that a ring shape is produced in the image plane. Figure taken from
Ref. [218].

intensity distribution in the focus of the imaging system, see Fig. 9.1(c). The phase
modulation can be realized either by a static element such as a phase plate, or by an
active system such as a liquid crystal (LC)-SLM or a DMD. The phase modulation
method excels in power efficiency, especially in the creation of small and sharp
features (e.g., micro-trap arrays in Rydberg quantum simulators). Vice versa, for the
generation of large and sharp features, the Fourier approach is inefficient, because
most of the high-frequency components will be close to 0. Another problem is the
computational effort that is needed to derive the input field for a desired pattern.
However, the Fourier approach is able to correct for aberrations resulting from the
optical system.

As a third option, a DMD or dark mask can be used to locally modulate the beam
intensity. A telescope is then typically used to directly image the resulting pattern
onto the atoms, see Fig. 9.1(b). Amplitude modulation is inherently inefficient
in terms of power, because parts of the intensity are cut out or absorbed by the
beamshaping element. Furthermore, for typical applications in ultracold atom
experiments, a high demagnification is needed to reach large trap depths, which
poses some limitations on the optical setup. However, the method can perform well
on both large and small features, and the shape of the directly imaged amplitude
mask is easy to compute. Additionally, DMDs can also be used to dynamically
change the trapping potential on the order of several kHz.

In our experiment, we want to generate large homogeneous traps with a high
uniformity. The direct amplitude modulation technique in combination with direct
imaging seems best suited for that. The requirement of a high beam quality means
that we need to be able to correct for imperfections of the incoming beam and
optical system. Furthermore, in the current state of the experiment, the optical
access is limited, which prevents the integration of a high-resolution imaging
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system needed for hard-walled traps. Additionally, without going to either the
ultraviolet (UV) regime or close to a Dy transition,2 it is not possible to find a
wavelength where the light has a repulsive effect on both species (see Fig. 6.1).
We have therefore originally decided to employ a DMD to produce red-detuned
flat-top profiles [287]. Such profiles have been produced for atom trapping with
extremely high quality, by a careful choice of techniques, and the employment of a
well-designed optical system and a feedback algorithm [288].

9.2 basic methods and technical details

This section will introduce the basics of how DMDs in direct imaging configuration
can produce grayscale images for homogeneous traps.

9.2.1 Digital Micromirror Devices

A DMD is a micro-opto-electro-mechanical system consisting of many microscopic
movable mirrors arranged as pixels on a chip, and is used mainly in video projectors
and lithography applications to project arbitrary light patterns. For an in-depth
discussion of the general working principle of DMDs please refer to Refs. [218, 289].
In a nutshell, each pixel can be addressed individually to move between two stable
positions, where the mirror plane is rotated by ±12◦ out of the chip plane. These
positions can be assigned to an on or off state, where the light is reflected to the
target image plane in the on state and elsewhere in the off state. Modern DMDs as
the DLP9000X consist of 2560 × 1600 pixels, which corresponds to 4k resolution
and can be driven with refresh rates of up to 12.9 kHz. Even faster refresh rates are
possible for models with smaller resolution.

Because of their ability to arbitrarily shape optical potentials, DMDs recently
have become popular also in the field of cold atoms, see for example Ref. [218]
and references therein. However, the nature of the pixels is inherently binary,
therefore, DMDs are perfectly suited for hard-walled trapping potentials like box
traps, provided the imaging system has a high enough resolution. To be able to
set values in between on and off, different techniques are possible. In applications
like video projectors, pixels can be toggled very fast between on and off to display
time-averaged shade values, since the human eye is not fast enough to sample at
high frequency. When working with cold atoms, the switching frequency has to be
compared to all other timescales of the system. For example, trapping frequencies
can be on the order of kHz, meaning that especially older DMD models might not
be fast enough and could introduce heating to the sample [290, 291].

2 The characterization of the polarizability around 626 nm actually came well after the start of the
DMD project. By now we could employ blue-detuned traps, but the techniques developed for red
detuning translate well to other applications, such as optical levitation.
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A second method to generate gray values that is used in this thesis, is to limit
the resolution of the imaging system with a spatial filter, such that the point spread
functions (PSFs) of the single DMD pixels overlap and multiple micromirrors
contribute to one point in the image plane. A grayscaling algorithm is then used to
calculate which pixels have to be switched on.

9.2.2 Direct Imaging

In the direct imaging configuration, the DMD plane is imaged onto the atoms via
an imaging system typically consisting of two lenses with focal lengths f1 and f2,
see Fig. 9.2. The DMD is placed in the focal plane of the first lens. To calculate
the pattern that has to be displayed by the DMD in order to arrive at the desired
intensity distribution, we look at the amplitude distribution g(x, y) of the beam as
it propagates through the system. Typically, the input beam intensity distribution
at the position of the DMD Iin(x, y) ∝ |gin(x, y)|2 will be close to a Gaussian profile.
After reflection on the DMD, the amplitude distribution will be given by

g1(x, y) = gin(x, y)r(x, y), (9.5)

where r(x, y) is the amplitude reflectance of the DMD at position (x, y) of the
individual pixels, which can be calculated by

r(x, y) =

√
T(x, y)
Iin(x, y)

. (9.6)

Here, T(x, y) is the target function that should be imaged onto the atoms. T has to
be chosen such that r ∈ [0, 1], or T < Iin at every point. Typically, direct imaging
systems are used in high-NA applications, where the spatial bandwidth is very
high. In an approximation to an ideal geometric image, this results in the output
field

gout(x, y) =
1
M

g1(x/M, y/M), (9.7)

where M = − f2/ f1 is the magnification of the imaging system. This is best suited
for hard-walled potentials such as blue-detuned box traps, because the imaging
resolution does not limit the steepness of the potential barrier.

However, in reality, the bandwidth of optical systems is limited, and as a result, a
single point will not be perfectly imaged but will appear washed out in the image
plane. The response of an imaging system to such a point source is described by
the PSF. In our system each DMD pixel contributes a more or less broad PSF. The
resulting image will then be a convolution of the ideal geometric image with the
PSF, and multiple pixels will contribute to the total intensity at a certain position.
The optical system itself is therefor acting as a lowpass filter, allowing us to use
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Figure 9.2: Schematic of the DMD test setup. Light is delivered to the DMD via an optical
fiber. The DMD is imaged to a camera by a telescope consisting of lenses with
focal lengths f1 and f2. The pinhole in the Fourier plane of the telescope is used
for spatial filtering. The camera acts as a beamprofiler and a computer is used
to analyze beam profiles, and control the DMD and upload patterns to it. In the
final experiment, the image plane at the place of the camera is imaged again
onto the atoms with a second imaging system.

many pixels together to set grayscale images. The cutoff frequency is set by the
properties of the optical system, but can also be directly controlled by introducing
a pinhole in the back focal plane of the first lens. The amplitude distribution in
frequency space right behind the pinhole is given by

g2(νx, νy) = F (g1(x, y))h(νx, νy), (9.8)

where F () denotes the Fourier transform and h(νx, νy) models the pinhole ampli-
tude transmission. The cutoff frequency νc depends on the focal length f1 of the
first lens and the radius Rph of the pinhole and is given by

νc =
Rph

λ f1
. (9.9)
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After the inverse Fourier transform F−1 caused by the second lens, the final
intensity distribution is

Iout ∝ |gout|2 =
∣∣∣F−1(F (g1(x, y))h(νx, νy))

∣∣∣2 . (9.10)

The choice of Rph depends heavily on the spatial frequencies involved in T(x, y).
For fast varying profiles, e.g., flat traps with steep walls, a high-quality imaging
system is required, and no pinhole is used. This in turn means that only a few
mirrors will contribute to the total intensity at a certain position in the image,
resulting in worse accuracy for I. For slowly varying profiles, however, Rph can
be tailored such that many pixels contribute to a single point and a high level of
accuracy can be achieved.

9.2.3 Grayscaling Algorithm

To obtain grayscale images from r(x, y) it has to be converted to a binary pattern
DMD(x, y) that can be displayed by the DMD. The naive approach would be to
just round r(x, y) to either 0 or 1, however, the error that is made when rounding is
lost, which limits the accuracy of the pattern. Instead, an error-diffusion algorithm
is used [292, 293]. The idea behind this algorithm is to set a pixel at position (x, y)
to 1 (0) if r for that pixel is above (below) a threshold value (typically 0.5). The
algorithm then computes the pixel error

e(x, y) = r(x, y)− DMD(x, y), (9.11)

and diffuses e to the reflectance of nearby pixels

r(x + a, y + b) = r(x + a, y + b) + c(a, b)e(x, y). (9.12)

In this case, we use a simple algorithm that propagates the error onto four other
nearby pixels (although many variations with different numbers of pixels are
possible). The coefficients c at the row and column index shifts a and b are then
given by

c(1,−1) = −3/16, c(1, 0) = −5/16,

c(1, 1) = −1/16, c(0, 1) = −7/16.
(9.13)

The algorithm traverses the DMD pattern from left to right for each row, starting at
the top row. An example is shown in Figure 9.3, where the grayscaling algorithm
was used to convert a grayscale image to a binary one. Because of the limited
resolution, the binary character becomes visible only when zooming in.

It was shown that the resulting quasi-random distribution of binary values has a
close to blue noise spectrum that minimizes noise at low spatial frequencies while
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Figure 9.3: Error-diffusion on an image of the mountains close to Innsbruck [295]. Top left
shows the original image, top right the error-diffusion image. The rectangles
indicate the position of the magnified image sections in the lower two panels.

shifting the digitization noise to higher frequencies. In combination with the spatial
filtering introduced before, which can be designed to filter out the high spacial
frequencies caused by the digitization, this algorithm ensures that multiple pixel
contribute to one point in the image plane, minimizing the error introduced by
converting the grayscale image to a binary image [294].

9.2.4 Input and Transformation

For this thesis, a simple C++ software was written as an interface between the user
and the system components. This includes the communication of the computer
with the DMD and the camera that is used to record the beam profile. The software
includes the integration of a Matlab engine to analyze the recorded profiles and to
design the DMD patterns.

To calculate the reflectance r(x, y), some knowledge about the intensity distri-
bution on the DMD Iin(x, y) is needed. For some applications, it might be enough
to approximate Iin as an ideal Gaussian profile, with its values for center coordi-
nates and widths estimated from beam profile measurements. However, a detailed
knowledge of Iin will lead to higher-quality solutions for r that already account for
imperfections in the initial beam.
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For this, the camera in the image plane is needed, as well as a transformation
from the camera coordinate system to the DMD system. An affine transformation
covers rotation, translation and scaling between two coordinate systems. We can
calculate the coordinates of a point xDMD in the DMD plane by

xDMD = A · xcam + B, (9.14)

where A is a 2 × 2 matrix and B is a translation vector. xcam are the corresponding
coordinates of the point in the camera system.

A and B can be found by recording a set of test points. For this, a small area
of about 5 × 5 pixels around the coordinates xi,DMD is displayed on the DMD and
the corresponding coordinates xi,cam are found by taking a picture in the imaging
plane and fitting it with a 2D Gaussian function. Three or more points are needed
to calculate the transformation.

To implement this in the control software, we use the OpenCV-package that
offers extensive computer vision capabilities, including methods to find A and B
as well as performing the transformation. This enables us to map the intensity
distribution Ic of the incoming beam to the DMD pixels such that imperfections
of the beam can already be accounted for in the generation of r. Furthermore, this
mapping can later be used in a feedback algorithm that maps an error function
back to the DMD plane to iteratively refine the DMD pattern. A good calibration
of the transformation is especially important for the feedback algorithm to work
properly. In the future, it might therefore be necessary to employ higher order
polynomial transformations that can include distortions caused by the imaging
system.

9.2.5 Red-Detuned Flat Traps

Because of the limitations imposed by the atomic transitions and the experimental
setup, we have chosen to start with red-detuned flat traps at 1064 nm.3 This is
arguably harder to realize with good quality than blue-detuned traps, where it is
rather straight forward to have a dark center region surrounded by sheets of light.
With a DMD, a blue-detuned hollow trap is realized by cutting out a portion of a
Gaussian beam [296]. For red-detuned traps on the other hand, a large region of
uniform maximum intensity is required that has to satisfy the requirement imposed
in section 9.1. This can be realized with a combination of direct imaging, spatial
filtering, grayscaling and the right choice of target function. These techniques will
also translate to the design of linear gradients for optical levitation.

3 At the starting time of this project, the Texas Instruments DLP4500NIR was the only available DMD
designed for infrared applications. This particular model features a diamond geometry, and suffers
from flicker noise and limited image display times, which requires some hardware modifications
similar to Ref. [291].
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Figure 9.4: FFT spectra of a SL target function (blue) and the intensity distribution of
a simulated beam directly after the DMD (red). For low spatial frequencies,
the two spectra coincide, while the digitization noise introduced by the error-
diffusion algorithm dominates for higher frequency components. This noise can
be eliminated with spatial filtering.

For a homogeneous red-detuned trap, a target function of an 8-th order
Superlorentzian (SL) form

SL(x, y) =
A0

1 +
(√

x2+y2

rSL

)8 (9.15)

has a flat-top region and is well suited to be used in combination with spatial
filtering, because of its narrow spatial frequency profile compared to a perfect box
function. As can be seen in Fig. 9.4, the main frequency components are located
in a narrow region around 0. Also shown is a simulated beam profile directly
after the DMD, displaying a realistic DMD pattern created by the grayscaling
algorithm. For low frequencies, it overlaps with the target SL spectrum and then
starts to deviate at higher frequencies because of the introduced blue noise from
the digitization. A careful choice of the cutoff frequency to the point where the two
curves separate ensures a high quality beam profile. However, the SL profile can not
feature particularly steep walls, as this would require frequency components that
overlap with digitization noise and are cut out by spatial filtering. This trade-off
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Figure 9.5: 2D profile of a first iteration SL beam without (a) and with 500 µm pinhole
(c) and corresponding cut along the middle in x direction (b, d). The red line
depicts a fitted SL. The exposure time of the camera was adjusted to avoid
saturation, leading to a difference in amplitude between the two profiles.

has to be kept in mind when designing the target function and spatial filter cutoff
frequency.

Figure 9.5 shows an experimental SL beam profile generated with the DMD, once
with a 500 µm pinhole in the imaging system and once with the pinhole removed.
In a first step, the profile of the incoming beam was measured with the camera
by switching all DMD pixels to the on state. The profile was then mapped to the
DMD plane to calculate r and subsequently the digitized DMD pattern. The figure
shows the effect of the spatial filtering. Especially in the image without pinhole,
some significant high-frequency noise is present. This is greatly reduced for the
profile with the pinhole, where the digitization noise is filtered out, resulting in a
much cleaner profile. As a result, the low-frequency modulation is more noticeable.

This can also be seen in Fig. 9.6, which shows a comparison of the spectra of the
two profiles shown in Fig. 9.5 along with the spectrum of the target SL function. The
three spectra overlap in the central blue shaded area, which shows the frequency
region that is able to pass through the spatial filter. Evidently, the spectrum without
the pinhole has a much higher spectral density at the mid-range of frequency
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Figure 9.6: Spectra of the profiles in Fig. 9.5. The insert shows a zoom of the central region.
The blue shaded area shows the frequencies that are allowed to pass through
the optical low-pass filter with a pinhole diameter of 500 µm.

components, which is responsible for the lower quality of the beam profile. The
step at a frequency of about 7 × 104 m−1 hints at the maximum spatial frequency
of the DMD, which is given by its mirror pitch.

In the case of the 500-µm pinhole, only low-frequency components can pass
through the optical system, which explains the much better quality of the profile.
However, except for the center low-frequency region, the spectrum is still consider-
ably higher than the target SL and is comparable to the unfiltered profile. From a
physical view, any noise at frequencies higher than the cutoff frequency is not able
to pass the pinhole, which means it has to originate somewhere after the lowpass
filter. This will be discussed in more detail in the next section.

To measure the quality of the generated beam profile and to be able to compare,
a root-mean-square (RMS) error

ϵRMS =

√√√√ 1
N ∑

x,y ϵ ξ

(
Ic(x, y)
T(x, y)

− 1
)2

(9.16)

is calculated by comparing the camera image Ic and the target function, in this
case T = SL. ϵRMS is restricted to a mask ξ which consists of N pixels. ξ is usually
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defined as the area where T > 0.99A0, so that ϵRMS is only calculated over the flat
part of the target function. Similarly, the maximum error is defined as

ϵm = max
x,y ϵ ξ

∣∣∣∣ Ic(x, y)
T(x, y)

− 1
∣∣∣∣ . (9.17)

The profile in Fig. 9.5(a) results in ϵRMS = 35% and ϵm = 76%, whereas the spatial
filtering improves this to 4.9% for the RMS error and a maximum error of 52%.
According to the estimations in Sec. 9.1, this would result in an average density
modulation of about 15%. To improve the SL profiles, an extensive investigation of
noise sources as well as the implementation of a feedback algorithm was necessary.

9.3 noise treatment

In general we can identify three different sources that can introduce noise that
deteriorates the beam quality or its measurement. Digitization noise was already
introduced, with the solution being the choice of a suiting digitization algorithm, as
well as spatial filtering. In this section we discuss the camera as a noise source and
some methods to limit its impact, as well as the influence of the usage of coherent
light.

9.3.1 Camera Noise

Every imaging sensor inherently suffers from noise, which will deteriorate the
image and therefore introduce features that are physically not present. In the scope
of this thesis we discuss a simplified model. The EMVA Standard 1228 [297] gives a
more detailed description of the measurement and classification of imaging sensor
characteristics and noise sources.

In simple words, photons incident on the sensor are converted to photo-electrons
with a certain quantum efficiency QE. On readout, the resulting electrical signal
gets amplified and then converted to a digital signal. In a simplification this can
be described by the gain K, which includes the whole process of conversion from
photon to digital signal. Furthermore, even when all light is blocked from reaching
the sensor, thermal electrons accumulate in the pixel structure over time, which
generates a dark current that is added to the digital signal as an offset. Different
noise sources are present at all stages of this process and the noise can generally be
divided in temporal and spatial components.

Temporal noise includes photon shot noise, as well as shot noise from dark
electrons in the pixels, and electrons in the amplification and readout circuits.
Electron shot noise dominates at low light intensity and has a dependence on
temperature, which means that it can be decreased to some extent by cooling the
sensor. Photon shot noise dominates at high light levels, but at the same time
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decreases relative to the signal with increasing light intensity. The temporal noise
component of our camera is about 1% [298] at high light levels, but can be reduced
easily by averaging over N successive frames and decreases as 1/

√
N. Typically we

average 170 frames, at which point the temporal noise component is suppressed
and the spatial noise component is revealed.

Spatial fixed pattern noise (FPN) originates from physical differences in the
single pixels. This includes dark signal non-uniformity (DSNU) caused by different
accumulation rates of dark electrons throughout the sensor’s pixels, and photo
response non-uniformity (PRNU). PRNU can be caused by varying QE, amplifica-
tion and conversion efficiencies, resulting from imperfections in the manufacturing
process, or contamination (e.g., dust) on the sensor surface or optical system. FPN
can be very disturbing for a human viewer and is a big problem in applications
where the photon flux is to be measured. DSNU is easily corrected by taking a
dark image with the same exposure time and subtracting it from the measurement
pictures. PRNU can be reduced by taking flat-field images from a homogeneous
light source. K can then be calibrated for each pixel and defective or dust-covered
pixels can be identified.

Since the focus of this work is on the spatial shape of the laser beam, a lot of
care has to be taken to also minimize PRNU, because otherwise we can not really
distinguish if the noise and deviations are on the beam itself or stem from the
imaging sensor. Furthermore, any feedback algorithm will to some extent introduce
the camera noise on the beam itself.

9.3.2 Flat-Field Correction

To characterize a sensor’s PRNU including contaminations such as dust, and
subsequently to correct for it, a light source with a very well known intensity
profile, ideally completely homogeneous, is needed. Integrating spheres can be
used as a spatially homogeneous light source to generate a flat intensity distribution.
We use a Thorlabs 4P3 modular integrating sphere with two high-power LEDs
centered at 1064 nm. Generally, the degree of flatness depends on the ratio of sizes
of the output port of the sphere and the imaging sensor, as well as the ratio of
port size to distance to the sensor [299]. If the distance is at least five times and
the sensor size smaller than 0.8 times the size of the output port, the uniformity
across the sensor should be better than 1%, however, the intensity will be strongly
reduced. To reduce the effect of temporal noise, 170 frames are averaged to reveal
the PRNU. An analysis of the standard deviation over the central region of the
flat-field image indicates a PRNU variation of about 1.4%.

A four-stage algorithm is employed to construct a flat-field image and lookup
tables that can be used to correct for PRNU. In a first step, the algorithm calculates
a local-median-filtered image and compares the raw image to the filtered version.
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Figure 9.7: Cutout of a dust speckle in the uncorrected (a) and corrected image (b). (a) and
(b) share the same color scale to show the effect of the correction. (c) shows the
relative deviation to the mean of the corrected image cutout.

If pixel values are more than 5% lower than in the filtered image, the pixel is
considered contaminated (for example, with a dust particle). The algorithm then
substitutes the pixel value with the value of another non-contaminated pixel from
a random position in its vicinity. This works well for small dust particles or single
defective pixels, however, if the particle shadows several tens of pixels (comparable
to the filter window size), the median value will also be substantially lower, meaning
that pixels that are only partially covered will not be detected. Therefore, in the
second step, the sequence is repeated with a median filter on the corrected picture.
Now, almost all contaminated pixels should be identified and corrected by non-
contaminated pixels nearby. The coordinates of each contaminated pixel as well
as the corresponding substituted pixel are saved in a lookup table. Fig. 9.7 shows
a cutout of a dust speckle in the uncorrected picture, as well as the same cutout
after the correction. The dust speckle results in a reduction in intensity of up to
90%. The correction minimizes this to less than 5%, which becomes comparable to
the average deviation in the rest of the cutout.

In a third step, another filtered image is calculated from the dust corrected image
with smaller median filter. Then, hot pixels are identified if the pixel value of the
dust corrected picture is more than 5% higher than the filtered image. These pixel
values are then substituted with the median image value. The resulting picture is
now corrected for contaminated and hot pixels and should represent the corrected
flat-field image F that can be used to correct for PRNU. Analyzing again the central
region of the corrected flat-field image results in an improved PRNU variation of
about 0.8%.

To correct an image (for example from a flat-top beam), dust contaminated pixels
are identified and corrected with the lookup table, and hot pixels are substituted
by the local median value. The resulting dust corrected image Idc should be free of
contaminated and hot pixels, and the corrected flat-field image F can be used to
calibrate the gain values. The final corrected image I f c is calculated as

I f c =
Idcm

F
, (9.18)
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Figure 9.8: Exemplary cut through a flattop profile before and after flat-field correction. The
two dips in the intensity in the raw picture Iraw come from dust contaminated
pixels and are corrected in the flat corrected picture I f c.

where m is the pixel averaged value of F. Ideally, the flat-field light source should
be completely homogeneous. However, realistically, there will still be some slow
variation across the sensor, and it might be necessary to replace m with a local
pixel value average to account for this variation. Care has to be taken that this does
not overlap with the spatial frequencies of slow variations in the sensor gain. To
test this method, a second flat-field image was taken and the flat-field correction
algorithm was applied to it. The standard deviation over the central region was
now as low as 0.1%, which we interpret as the residual temporal noise component
of the camera.

Ideally, the flat-field image is taken with the same exposure time as the one to
be corrected, since it influences dark current and read error. At the same time,
the intensity for both pictures should be aimed at about 70-80% of the saturation
intensity of the camera, to maximize the signal-to-noise ratio. It is not always
possible to achieve both simultaneously.

Figure 9.8 shows a cut through Iraw and I f c of an image of a flat-top beam.
Although the correction algorithm works very well for dust contaminated pixels
and therefore greatly improves the maximum error from about 50% to about 20%,
the overall effect on the RMS error is much smaller, only on the order of about
0.2%. Evidently, the corrected image still exhibits high-frequency noise that seems
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to not originate from PRNU. With 170 averaged frames, there is only a residual
read noise component, which is not physically present on the beam itself and could
be filtered out electronically. However, other noise in the same frequency range that
is present on the optical beam would also be filtered out wrongfully. It is therefore
important to estimate the different contributions of other possible noise sources.

9.3.3 Coherent Light and Interference

Besides the camera noise, laser speckles and interference fringes can become a
problem, since in atom trapping applications the light is usually generated from
a narrow bandwidth laser source and is highly coherent. Analyzing the temporal
behavior of single pixels over successive beam profiles shows that there is still some
temporal noise present that does not come from the sensor itself. On average, this
noise is about 0.5%, however in some regions the single pixel temporal noise is
about 1%. Because the single profiles were averaged over 170 frames we can exclude
read noise as the dominating source. Instead we suspect changing interference
patterns to be the cause of the temporal behavior.

Interference fringes originate from the superposition of the original beam and a
scattered spherical wave, for example originating from scatterers such as dust on the
surfaces of optical components. Numerical simulations were employed to estimate
the effect of scatterers and speckles on the beam quality [300]. Scatterers produce
interference rings with rather low spatial frequencies in the far field. Drifts in the
laser frequency or optical path length modify the phase of the interference rings
temporally and cause them to move. When recording several beam profiles every
few tens of seconds and calculating the standard deviation per pixel, we indeed
see correlated regions of higher standard deviation corresponding to interference
rings. In principle they could be corrected for with a feedback algorithm on the
DMD provided they change slow enough during the measurement period.

Another concern is the appearance of speckles originating from small height
changes of optical surfaces in the beam path. In our setup, speckle patterns with
high spatial frequencies could possibly come from the last imaging lens. Speckles
originating from before the spatial filter should be suppressed to low-frequency
modulations. Modeling of speckle patterns is more difficult, as the statistical
properties of the surface have to be known to infer speckle size at the position of
the camera [301]. Without this information we can unfortunately not determine if
the high-frequency noise on the pictures is caused by speckles.

Special care also has to be taken in the choice of camera model, since the thin layer
architecture of solid-state sensors promotes interference between reflections from
layer boundaries. The magnitude and shape depends on the specific design and
materials used, and usually becomes more pronounced the longer the wavelength
is. This interference is not present on the beam before the camera, but on the image,
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and will be introduced to the beam by a feedback algorithm when not filtered out.
The camera model chosen here also has its sensor protection glass removed, which
would be another source for interference.

As observed by other groups [288, 302], using broadband sources or scanning the
frequency of the laser greatly reduces the occurrence of interference features. How-
ever, this might not be compatible with cold atom experiments, since modulation
of the light frequency can lead to parametric heating of the atomic sample if the
modulation frequency is comparable to the trap frequency. Furthermore, certain
applications such as the dual-species optical levitation rely on a precise detuning
from a narrow atomic transition. The levitation condition would then not be met.

9.3.4 Digital Lowpass Filter

Looking at the setup in Fig. 9.2, one can arrive at the argument that noise with a
frequency higher than the cutoff frequency of the spatial filter can not physically
pass the optical system [294]. It therefore has to be generated somewhere after the
pinhole. In Ref. [294] the noise components with frequencies higher than the cutoff
frequency of the pinhole spatial filter are attributed to the camera. Subsequently a
digital lowpass filter that filters noise introduced by the camera was designed for
post-processing, improving their RMS error to lower than 1%.

As we observe interference that can not clearly be attributed to a single optical
element or the camera, such a post-processing approach could lead to an underesti-
mation of the error. Unfortunately, without knowledge of the statistical properties
of the surface roughness of the optical elements we can not estimate an upper
bound for the spatial frequency of the speckle pattern. However, we can still use
a digital filter to estimate the contribution of some frequency ranges to the RMS
error.

Figure 9.9 shows the effect of post-processing on a beam profile. For the original
profile we observe ϵRMS = 4.8%. For a filter that reflects the maximum spatial fre-
quency that the DMD can act upon, this reduces to 4%. Finally for a filter designed
to match the pinhole transfer function we get 3.6%, which shows that, although
some noise is located at frequencies higher than what the DMD supports, at this
point the main contribution to the high RMS error comes from a low-frequency
modulation on the beam, which can be improved by a feedback algorithm.

9.4 feedback algorithm

To improve the quality of the beam profiles, different feedback algorithms have been
proposed and used. In general, the camera picture is compared to the target profile
and an error matrix is calculated, which can then be used to refine the pattern
on the DMD. The algorithms differ in what way the feedback is employed to the
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Figure 9.9: Cut through a beam profile with different digital filters.

DMD pattern. For example, a PI-feedback [303] calculates an error matrix as the
difference between target and camera picture and then adds it to the last reflectivity,
weighted by a proportional and integral coefficient. A new DMD pattern is then
calculated by digitizing the new reflectivity, which leads to an entirely new pattern.

Here we have chosen an algorithm that works by flipping single pixels [294]
with a bookkeeping approach. First, the error matrix in the camera plane Ec(x, y) is
calculated as the difference between target and camera image Ec(x, y) = T(x, y)−
Ic(x, y), and maxima and minima are identified. The algorithm then counts the
number of pixels Non in the on state in a small region S around the maxima/minima
and determines the number of pixels to be flipped as

N = Non ∑
{x,y}∈S

Ec(x, y)
T(x, y)

. (9.19)

The shape of the original input beam is thereby accounted for by counting the
number of on pixels that were necessary to arrive at the recorded intensity. The
corresponding coordinates of the maximum/minimum on the DMD are then
calculated using the affine transformation, and N pixels are switched on in the
vicinity if N > 0, or vice versa if N < 0. This procedure is then repeated for other
extrema in Ec(x, y) and the resulting pattern is finally loaded to the DMD, and
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the RMS error improves. In the next iteration, the size of S should be decreased to
improve the accuracy of the feedback, as the size of S influences the spatial extent
of the features that can be addressed. The algorithm stops when the RMS error can
not be improved anymore.

As an extension to this procedure [304], if the PSF of the optical system is known,
the algorithm can also check whether Ec(x, y) improves after a PSF is added or
subtracted from the picture at the position of the extrema, which corresponds
to flipping a single pixel on or off, respectively. Supposedly, this should lead to
a higher accuracy of the feedback, since smaller features can be addressed by
directly computing the effect of switching a single pixel at its correct position.
Although the PSF can be measured by switching only a single or a small number
of mirrors on, we have found that this approach does not lead to better results than
the bookkeeping approach in our case. We attribute this to the fact that measuring
the PSF of a single pixel has to be done at extremely low light levels on the camera,
which demands the adjustment of the exposure time, which in turn also influences
the noise levels. Furthermore, the PSF has to be weighted by the spatial intensity
variation of the input beam, which the bookkeeping routine does automatically.
Also, the computational cost of adding and subtracting multiple individual PSFs
per extrema in Ec(x, y) is dramatically higher than flipping multiple pixels at once,
especially in the first iterations of the feedback, where the RMS error is still quite
large and many pixels have to be switched.

As stated before, it is important that the camera is flat-field corrected and high-
frequency spatial noise originating from other sources than the beam itself is
minimized. Otherwise, a single hot pixel from the camera, for example, will occur
as a minimum in Ec. The algorithm will then try to flip some pixels to correct for
the deviation, but since the error is originating from the camera and not dependent
on the actual intensity of the beam, the algorithm will never succeed. Instead, over
a few iterations, more and more pixels in this region will be set to the off state and
a dark spot will appear in the beam.

9.5 best achieved flat profile

Fig. 9.10 shows our best achieved flat-top beam after employing all of the discussed
concepts including feedback. To minimize camera noise, 170-frame averages were
taken and PRNU was minimized by using the flat-field correction for every image.
To find the optimal cutoff frequency, the target SL was numerically filtered with
different cutoff frequencies. The smallest possible cutoff that still preserved the SL
shape was chosen, as to get rid of as much digitization noise as possible. The focal
length of f1 = 150 mm and the pinhole diameter of 500 µm were then selected
accordingly. After employing the bookkeeping algorithm, the best profile resulted
in ϵRMS = 3.2% and a maximum error of ϵm = 17% without digital filtering.



9.5 best achieved flat profile 147

Figure 9.10: Best achieved beamprofile and cut through it. The red line indicates a fit with
a SL profile.

Compared to the best reported RMS error of 0.2% in Ref. [288], our result is still
an order of magnitude worse. However, as explained before, at this level it is not
easy to identify the different noise sources. In Ref. [294], the argument is made
that every noise component with a frequency higher than the cutoff frequency of
the spatial filter can not physically pass the optical system and must have another
source, therefore it can be filtered away digitally in post-processing, which results
in the number given above. In our case we can not be certain that this is a valid
approach, because speckle patterns with high spatial frequency can not be ruled
out.

It can still be useful to employ filters to get an idea of the impact of noise in
certain spatial frequency regions. A cautious choice of a 3 × 3 nearest-neighbor
averaging filter already improves the RMS error by a factor of 2, while employing
a filter reflecting the pinhole cutoff frequency would even result in ϵRMS = 0.53%.
This suggests that high-frequency noise is the main contribution to the RMS error,
and that the feedback algorithm got rid of most of the low-frequency deviations.
The remaining low-frequency error is possibly caused by an insufficient accuracy
of the determined affine transformation between camera and DMD plane.

In Ref. [288] the impact of the coherence of the light source was investigated
and it was shown that the usage of incoherent light improved the beam quality.
This would possibly also justify the use of a digital filter, since speckle noise can
be ruled out in this case. Such an approach is unfortunately often not applicable
because of the requirement of a certain light frequency, as in our case. It could still
be useful to see if high-frequency noise is still present when using an incoherent
source. If so, this would suggest that the camera is still limiting the performance of
our system.
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Figure 9.11: Beamprofile and cuts through a slope profile. The target function is depicted
in red.

Summing up, we are confident that the RMS error of our flat-top profiles is at
least 3.2% or better. According to the discussion in Sec. 9.1 this would lead to a
root-mean-square density modulation in the flat part of the trap of about 10%.
Ultimately, this should be tested on the atoms itself. A second imaging system
is needed to image the profile in Fig. 9.10 onto the atoms. Because of the large
demagnification needed to adjust the size of the trap, the high-frequency features
would be scaled to sub-wavelength sizes and not be resolved anymore. In the end,
the atomic density distribution should be taken as a measure of the beam quality,
provided the atom imaging resolution is good enough.
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9.6 linear optical gradients

Some of the introduced methods can also be used to generate other beam shapes
for trapping. We are mainly interested in generating linear optical gradients to
compensate the gravitational potential. By requiring

U(z, ω) = −2πa3
0

c
α̃(ω)I(z) !

= mgz = Ug(z), (9.20)

we see that the optical intensity in z-direction has to have a linear slope

I(z) = − mgc
2πa3

0α̃(ω)
z (9.21)

in order to be able to levitate the atoms. This potential can be superimposed with
an ordinary Gaussian trapping profile or with a uniform profile, and therefore
should be as homogeneous as possible, which poses similar challenges as before.

In addition to the techniques already discussed, the choice of target function is
again very important. In our experience, the easiest way is to set the target function
as a combination of the linear gradient and the SL shape, as this again features a
narrow spatial frequency profile centered at low frequencies. In this case, the SL is
modified to a rectangular instead of circular shape. The resulting target function
for the DMD (y on the DMD is z in the experiment)

Ts(x, y) = SL(x, y)× k (y − y0) (9.22)

can be customized to fit the original Gaussian shape with the slope factor k. By
changing the offset y0, the origin of the slope can be shifted with respect to the SL
profile, thus changing the overall shape from a slope profile to a tilted-flattop-like
profile.

The resulting beam profile after the bookkeeping feedback algorithm is shown
in Fig. 9.11. The fitted target function Ts (red) interpolates between a high quality
linear part in the central region and the SL part in the edge regions, mitigating the
problems that come when spatially filtering the high-frequency components needed
for a steeper cutoff. The deviation from Ts at low intensities is because the feedback
algorithm was set to act only at certain intensity levels to avoid problems with the
image background. Over the region where SL > 0.99A0, the resulting ϵRMS = 3.5%
is very close to the reached quality for the flattop beam and should work well for
compensating gravity. Similar as before, employing a digital filter simulating the
pinhole (here 1 mm diameter) results in a lower error of ϵRMS = 1.0%, suggesting
that we mostly exhibit the same limiting factors.

The region where SL > 0.99A0 measures about 1.9 × 1.9 mm2 on the DMD,
which is necessary to utilize as many of the DMD pixels as possible to achieve a
high quality profile. At the same time the required total power of a square region at
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the position of the atoms with length l is proportional to l3. As a result, to minimize
the needed total power, a suiting telescope with a demagnification of about 1/80
has to employed, such that this region barely fully covers the trapping volume
of the dipole traps. Then α̃(ω), k and the initial optical power of the Gaussian
beam have to be matched to l and set such that the levitation condition is fulfilled.
Depending on the combination of these parameters, input powers of some W will
be needed, which can be difficult to reach depending on the wavelength. One
problem with this approach is that a lot of optical power of the original Gaussian
beam is cut away to achieve the slope profile and is not utilized. It might therefore
be better to operate the DMD in Fourier imaging, since phase modulation can be
far more power efficient in cases where the target profile is similar to the input
profile.



Part IV
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C O N C L U S I O N

When I joined the Dy-K experiment for my Master’s thesis, assembly of the the
vacuum setup had just started after moving into a new lab space. After developing
a laser system for the K MOT, I continued as a PhD student, at a time when we
were able to realize our first dual fermionic MOT and subsequent loading of the
atoms into a dipole trap, which was soon followed by the measurement of the Dy
polarizability (see Chapter 7). Since this first publication, the apparatus constantly
evolved to meet the new requirements imposed by the physics we wanted to
explore. At the end of this thesis, I want to take a look back, to what has been
achieved during my time as a PhD student, and a look ahead, to what is coming
next for the Dy-K experiment in the near and far future.

My work can be roughly separated in two parts. In the first part of my work, I
focused on developing a method to better understand the physical phenomena we
observed in the experiment. After extensive scans over the magnetic field, we were
able to identify and characterize a suitable interspecies Feshbach resonance close
to 217 G that enables us to realize strongly interacting Fermi-Fermi mixtures. The
Monte Carlo simulations started as a simple model to verify that the slowing effect
we observed in the expansion of the interacting mixture can indeed be attributed
to a high collision rate between the two species. The immediate good agreement
between experiment and simulation led to a more thorough characterization of
the simulation method, trials of possible expansions to the model and substantial
improvements in computational efficiency. As a result, we now have a tool that
serves as a fast test bed for some physical phenomena that might appear in the
experiment. However, it has become clear that the simulation model does not
work well in the regime where quantum statistical effects become important,
which should become accessible as the experimental apparatus evolves. For a
more quantitative analysis of phenomena under these conditions, more elaborate
simulation models already exist [174], as well as other, better working theoretical
descriptions [191, 305].

The second part is connected to the technological advances for our apparatus in
terms of controlling the shape and strength of the trapping potentials. The mea-
surement of the Dy polarizability at the standard trapping wavelength of 1064 nm
led to a deeper understanding of our trap configuration and subsequently enabled
us to optimize the preparation protocols used to reach the degenerate regime [105].
The measurement of the Dy polarizability close to the 626-nm intercombination line
now allows us to realize traps that are blue detuned for both species simultaneously,
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as well as to accurately tune the differential polarizability between Dy and K. This
gives us one more handle to control the system and realize favorable conditions to
access the superfluid regime [225]. A new high-power laser system for 626 nm is
already in place to supply high-power beams.

In terms of controlling the shape of the potential, the DMD system is now ready
to realize red-detuned homogeneous traps and linear gradients of high quality.
However, currently the apparatus lacks optical access to add an imaging system
with high demagnification, which would be necessary to realize traps on the length
scale of the atomic sample with good quality and trap depth. One possible solution
to this problem would be to add a glass science chamber to the apparatus, which
would provide space for a high-resolution objective that could be used for imaging
the sample and projecting the DMD patterns. There is a reserved port available
on the main chamber, however this would involve substantial modifications to
the current vacuum and laser setups, as well as adding a transport stage between
the chambers. A second generation experiment might therefore be better suited
to incorporate high-resolution imaging and DMD setups in a more customized
design. As a more feasible solution in the short term, we could change to Fourier
imaging and phase modulation for the optical levitation scheme. The addition of
the new 626-nm laser also allows us to realize traps that are blue detuned for both
species. These can also be generated with an alternative technique, for example by
employing axicons [285, 306], which need less space to set up. A proof-of-principle
test has been conducted with such a setup in the Dy-K experiment, and although
a trapped sample was realized, the apparatus is currently lacking the imaging
quality to confirm the uniformity of the potential through absorption imaging of
the atoms.
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C U R R E N T S TAT E A N D W H AT ’ S N E X T F O R T H E D Y- K
E X P E R I M E N T

In parallel to my thesis, several advancements were made in the experimental
apparatus, some of the details are provided in Refs. [307, 308]. Ramping the
magnetic field close to the 217-G resonance involves crossing many Dy intraspecies
and Dy-K interspecies resonances, which leads to heating of the sample and
atom loss. To circumvent these effects, a lot of time was spent on finding optimal
experimental sequences that involve separating the two species by gravity during
the ramp. Furthermore, the effect of induced eddy currents in our steel chamber was
minimized by calculating optimized current ramps with a feed-forward technique.
New power supplies with less noise were also added to the apparatus. An in-depth
characterization of the dense Dy single species Feshbach spectrum was performed
at low magnetic fields [224] and close to the inter-species resonances, and revealed
regions with low loss, which serve as suitable preparation points for the sample.

With these advancements, we were able to identify several Dy-K resonances
at lower fields [151] that were previously inaccessible because of their narrow
character (in terms of magnetic field) and because we lacked field control. The
observation of molecules at the BEC side of these resonances allowed us to measure
the R∗ parameter, and work is now underway to be able to prepare pure and cold
molecular samples and ultimately a DyK molecular BEC.

More generally, recent theoretical work [225] suggests that carefully tuning the
trapping potentials of K and Dy would increase the temperature where resonant
superfluidity is expected to appear to experimentally feasible values. In this case, a
study of the mixture across the phase diagram will provide an important benchmark
for theoretical models. Ultimately, with a substantial improvement of temperature
and density, our system will be a good candidate to observe the long elusive FFLO
phase. With the integration of the homogeneous trapping system we will also
maximize our chances to be able to observe pairing at non-zero momentum.

So far, the hydrodynamic expansion is our main signature of resonant interac-
tions in the mixture. A colder, denser sample would also allow us to access new
phenomena, for example the observation of collective oscillations, which has not yet
been achieved with a mass-imbalanced Fermi-Fermi mixture. Preliminary measure-
ments showed that we can currently only barely access the strongly damped regime
between the collisionless and hydrodynamic regime for the CoM mode. With an
increase of the scattering rate, we should be able to observe a locked oscillation of
both species at the same frequency, different from their trapping frequencies.
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and J. M. Hutson. Observation of Feshbach resonances between alkali and closed-
shell atoms. Nat. Phys. 14 (2018), cit. on p. 9.

[102] A. Green, H. Li, J. H. See Toh, X. Tang, K. C. McCormick, M. Li, E. Tiesinga,
S. Kotochigova, and S. Gupta. Feshbach Resonances in p-Wave Three-Body
Recombination within Fermi-Fermi Mixtures of Open-Shell 6Li and Closed-Shell
173Yb Atoms. Phys. Rev. X 10 (2020), cit. on p. 9.

[103] B. Mukherjee, M. D. Frye, and J. M. Hutson. Feshbach resonances and molecule
formation in ultracold mixtures of Rb and Yb(3P) atoms. Phys. Rev. A 105 (2022),
cit. on p. 9.

[104] E. Neri, A. Ciamei, C. Simonelli, I. Goti, M. Inguscio, A. Trenkwalder, and
M. Zaccanti. Realization of a cold mixture of fermionic chromium and lithium
atoms. Phys. Rev. A 101 (2020), cit. on p. 9.

[105] C. Ravensbergen, V. Corre, E. Soave, M. Kreyer, E. Kirilov, and R. Grimm.
Production of a degenerate Fermi-Fermi mixture of dysprosium and potassium
atoms. Phys. Rev. A 98 (2018), cit. on pp. 11, 21, 22, 28, 31–34, 36, 47, 110, 112,
123, 153.

[106] Stable diffusion online, cit. on p. 13.

[107] W. Ketterle and M. W. Zwierlein. Making, probing and understanding ultracold
Fermi gases. Rivista del Nuovo Cimento 31 (2008), cit. on pp. 15, 17, 47.

[108] J. J. Sakurai and S. F. Tuan. Modern Quantum Mechanics. Addison-Wesley
Publishing Company, Inc., 1994, cit. on p. 15.

[109] D. S. Petrov. Three-boson problem near a narrow Feshbach resonance. Phys. Rev.
Lett. 93 (2004), cit. on pp. 17, 36.

http://dx.doi.org/10.1364/OL.39.003138
http://dx.doi.org/10.1364/OL.39.003138
http://dx.doi.org/10.1103/PhysRevLett.122.130405
http://dx.doi.org/10.1103/PhysRevLett.122.130405
http://dx.doi.org/10.1103/PhysRevX.9.011051
http://dx.doi.org/10.1103/PhysRevX.9.021012
http://dx.doi.org/10.1103/PhysRevX.9.021012
http://dx.doi.org/10.1103/PhysRevA.92.022708
http://dx.doi.org/10.1103/PhysRevA.92.022708
http://dx.doi.org/10.1038/s41567-018-0169-x
http://dx.doi.org/10.1038/s41567-018-0169-x
http://dx.doi.org/10.1103/PhysRevX.10.031037
http://dx.doi.org/10.1103/PhysRevX.10.031037
http://dx.doi.org/10.1103/PhysRevX.10.031037
http://dx.doi.org/10.1103/PhysRevA.105.023306
http://dx.doi.org/10.1103/PhysRevA.105.023306
http://dx.doi.org/10.1103/PhysRevA.101.063602
http://dx.doi.org/10.1103/PhysRevA.101.063602
http://dx.doi.org/10.1103/PhysRevA.98.063624
http://dx.doi.org/10.1103/PhysRevA.98.063624
https://stablediffusionweb.com/
http://dx.doi.org/10.1103/PhysRevLett.93.143201


bibliography 165

[110] M. Inguscio, W. Ketterle, and C. Salomon, ed. Ultra-cold Fermi Gases: Pro-
ceedings of the International School of Physics "Enrico Fermi", Course CLXIV,
Varenna, 2006. IOS Press, 2008, cit. on p. 20.

[111] L. Pitaevskii and S. Stringari. Bose-Einstein Condensation and Superfluidity.
Oxford University Press, 2016, cit. on pp. 20, 76.

[112] G. C. Strinati, P. Pieri, G. Röpke, P. Schuck, and M. Urban. The BCS-BEC
crossover: From ultra-cold Fermi gases to nuclear systems. Phys. Rep. 738 (2018),
cit. on p. 20.

[113] K.-H. Bennemann and J. B. Ketterson. Novel Superfluids: Volumes 1 and 2.
Oxford University Press, Oxford, 2013, 2014, cit. on p. 20.

[114] K. Gubbels and H. Stoof. Imbalanced Fermi gases at unitarity. Phys. Rep. 525
(2013), cit. on pp. 20, 41, 111.

[115] K. B. Gubbels, J. E. Baarsma, and H. T. C. Stoof. Lifshitz Point in the Phase
Diagram of Resonantly Interacting 6Li-40K Mixtures. Phys. Rev. Lett. 103 (2009),
cit. on pp. 20, 28.

[116] L. Radzihovsky and D. E. Sheehy. Imbalanced Feshbach-resonant Fermi gases.
Rep. Prog. Phys. 73 (2010), cit. on p. 20.

[117] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov. Scattering properties of
weakly bound dimers of fermionic atoms. Phys. Rev. A 71, 012708 (2005), cit. on
pp. 20, 27.

[118] D. S. Petrov, C Salomon, and G. V. Shlyapnikov. Diatomic molecules in
ultracold Fermi gases - novel composite bosons. J. Phys. B 38 (2005), cit. on
pp. 20, 27.

[119] E. Wille et al. Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach
resonances and scattering properties of 6Li and 40K. Phys. Rev. Lett. 100, 053201
(2008), cit. on p. 20.

[120] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev. Strongly Dipolar Bose-Einstein
Condensate of Dysprosium. Phys. Rev. Lett. 107 (2011), cit. on pp. 21, 95, 96,
110.

[121] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F.
Ferlaino. Bose-Einstein Condensation of Erbium. Phys. Rev. Lett. 108 (2012),
cit. on pp. 21, 95.

[122] A. Trautmann, P. Ilzhöfer, G. Durastante, C. Politi, M. Sohmen, M. J. Mark,
and F. Ferlaino. Dipolar Quantum Mixtures of Erbium and Dysprosium Atoms.
Phys. Rev. Lett. 121 (2018), cit. on pp. 21, 110.

[123] S. Baier, D. Petter, J. H. Becher, A. Patscheider, G. Natale, L. Chomaz, M. J.
Mark, and F. Ferlaino. Realization of a Strongly Interacting Fermi Gas of Dipolar
Atoms. Phys. Rev. Lett. 121 (2018), cit. on p. 21.

http://dx.doi.org/10.1016/j.physrep.2018.02.004
http://dx.doi.org/10.1016/j.physrep.2018.02.004
http://dx.doi.org/10.1016/j.physrep.2012.11.004
http://dx.doi.org/10.1103/PhysRevLett.103.195301
http://dx.doi.org/10.1103/PhysRevLett.103.195301
http://dx.doi.org/10.1088/0034-4885/73/7/076501
http://dx.doi.org/10.1103/PhysRevA.71.012708
http://dx.doi.org/10.1103/PhysRevA.71.012708
http://dx.doi.org/10.1088/0953-4075/38/9/014
http://dx.doi.org/10.1088/0953-4075/38/9/014
http://dx.doi.org/10.1103/PhysRevLett.100.053201
http://dx.doi.org/10.1103/PhysRevLett.100.053201
http://dx.doi.org/10.1103/PhysRevLett.107.190401
http://dx.doi.org/10.1103/PhysRevLett.107.190401
http://dx.doi.org/10.1103/PhysRevLett.108.210401
http://dx.doi.org/10.1103/PhysRevLett.121.213601
http://dx.doi.org/10.1103/PhysRevLett.121.093602
http://dx.doi.org/10.1103/PhysRevLett.121.093602


166 bibliography

[124] C. Ravensbergen, V. Corre, E. Soave, M. Kreyer, S. Tzanova, E. Kirilov, and
R. Grimm. Accurate Determination of the Dynamical Polarizability of Dysprosium.
Phys. Rev. Lett. 120 (2018), cit. on pp. 21, 22, 110, 111, 113, 122.

[125] A. Petrov, E. Tiesinga, and S. Kotochigova. Anisotropy induced Feshbach
resonances in a quantum dipolar gas of magnetic atoms. Phys. Rev. Lett. 109
(2012), cit. on p. 21.

[126] N. Q. Burdick, Y. Tang, and B. L. Lev. Long-Lived Spin-Orbit-Coupled Degener-
ate Dipolar Fermi Gas. Phys. Rev. X 6 (2016), cit. on pp. 22, 37, 95, 110.

[127] M. Arndt, M. Ben Dahan, D. Guéry-Odelin, M. W. Reynolds, and J. Dalibard.
Observation of a Zero-Energy Resonance in Cs-Cs Collisions. Phys. Rev. Lett. 79
(1997), cit. on pp. 22, 24.

[128] M. E. Gehm, S. L. Hemmer, K. M. O’Hara, and J. E. Thomas. Unitarity-limited
elastic collision rate in a harmonically trapped Fermi gas. Phys. Rev. A 68 (2003),
cit. on pp. 22, 24.

[129] M. Anderlini, D. Ciampini, D. Cossart, E. Courtade, M. Cristiani, C. Sias,
O. Morsch, and E. Arimondo. Model for collisions in ultracold-atom mixtures.
Phys. Rev. A 72 (2005), cit. on pp. 24, 45, 55, 56, 71.

[130] C. A. Regal, M. Greiner, and D. S. Jin. Lifetime of Molecule-Atom Mixtures near
a Feshbach Resonance in K. Phys. Rev. Lett. 92, 083201 (2004), cit. on pp. 26,
37.

[131] T. Bourdel, J. Cubizolles, L. Khaykovich, K. M. F. Magalhães, S. J. J. M. F.
Kokkelmans, G. V. Shlyapnikov, and C. Salomon. Measurement of the Interac-
tion Energy near a Feshbach Resonance in a 6Li Fermi Gas. Phys. Rev. Lett. 91
(2003), cit. on pp. 26, 37.

[132] S. Jochim. Bose-Einstein Condensation of Molecules. PhD thesis. Innsbruck
University, 2004, cit. on pp. 26, 37.

[133] G. Barontini, C. Weber, F. Rabatti, J. Catani, G. Thalhammer, M. Inguscio,
and F. Minardi. Observation of heteronuclear atomic Efimov resonances. Phys.
Rev. Lett. 103 (2009), cit. on p. 27.

[134] R. A. W. Maier, M. Eisele, E. Tiemann, and C. Zimmermann. Efimov Resonance
and Three-Body Parameter in a Lithium-Rubidium Mixture. Phys. Rev. Lett. 115
(2015), cit. on p. 27.

[135] L. J. Wacker, N. B. Jørgensen, D. Birkmose, N. Winter, M. Mikkelsen, J.
Sherson, N. Zinner, and J. J. Arlt. Universal Three-Body Physics in Ultracold
KRb Mixtures. Phys. Rev. Lett. 117 (2016), cit. on p. 27.

[136] R. S. Bloom, M.-G. Hu, T. D. Cumby, and D. S. Jin. Tests of Universal Three-
Body Physics in an Ultracold Bose-Fermi Mixture. Phys. Rev. Lett. 111 (2013),
cit. on p. 27.

http://dx.doi.org/10.1103/PhysRevLett.120.223001
http://dx.doi.org/10.1103/PhysRevLett.109.103002
http://dx.doi.org/10.1103/PhysRevLett.109.103002
http://dx.doi.org/10.1103/PhysRevX.6.031022
http://dx.doi.org/10.1103/PhysRevX.6.031022
http://dx.doi.org/10.1103/PhysRevLett.79.625
http://dx.doi.org/10.1103/PhysRevA.68.011603
http://dx.doi.org/10.1103/PhysRevA.68.011603
http://dx.doi.org/10.1103/PhysRevA.72.033408
http://dx.doi.org/10.1103/PhysRevLett.92.083201
http://dx.doi.org/10.1103/PhysRevLett.92.083201
http://dx.doi.org/10.1103/PhysRevLett.91.020402
http://dx.doi.org/10.1103/PhysRevLett.91.020402
http://dx.doi.org/10.1103/PhysRevLett.103.043201
http://dx.doi.org/10.1103/PhysRevLett.115.043201
http://dx.doi.org/10.1103/PhysRevLett.115.043201
http://dx.doi.org/10.1103/PhysRevLett.117.163201
http://dx.doi.org/10.1103/PhysRevLett.117.163201
http://dx.doi.org/10.1103/PhysRevLett.111.105301
http://dx.doi.org/10.1103/PhysRevLett.111.105301


bibliography 167

[137] R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D. Kuhnle, and M.
Weidemüller. Observation of Efimov Resonances in a Mixture with Extreme Mass
Imbalance. Phys. Rev. Lett. 112 (2014), cit. on p. 27.

[138] S.-K. Tung, K. Jiménez-García, J. Johansen, C. V. Parker, and C. Chin. Ge-
ometric Scaling of Efimov States in a 6Li−133Cs Mixture. Phys. Rev. Lett. 113
(2014), cit. on p. 27.

[139] J. Ulmanis, S. Häfner, R. Pires, F. Werner, D. S. Petrov, E. D. Kuhnle, and
M. Weidemüller. Universal three-body recombination and Efimov resonances in
an ultracold Li-Cs mixture. Phys. Rev. A 93 (2016), cit. on p. 27.

[140] R. S. Lous, I. Fritsche, M. Jag, F. Lehmann, E. Kirilov, B. Huang, and R.
Grimm. Probing the Interface of a Phase-Separated State in a Repulsive Bose-Fermi
Mixture. Phys. Rev. Lett. 120 (2018), cit. on pp. 27, 69.

[141] S. Tzanova. Realization and characterization of two unconventional ultracold
mixtures. PhD thesis. University of Innsbruck, 2020, cit. on p. 27.

[142] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle. Direct
observation of the superfluid phase transition in ultracold Fermi gases. Nature 442
(2006), cit. on p. 28.

[143] A. D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser, H.-C. Nägerl,
R. Grimm, and C. Chin. Determination of atomic scattering lengths from mea-
surements of molecular binding energies near Feshbach resonances. Phys. Rev. A
79 (2009), cit. on p. 29.

[144] K. Jachymski and P. S. Julienne. Analytical model of overlapping Feshbach
resonances. Phys. Rev. A 88 (2013), cit. on pp. 29, 31.

[145] K. M. O’Hara, S. L. Hemmer, S. R. Granade, M. E. Gehm, J. E. Thomas,
V. Venturi, E. Tiesinga, and C. J. Williams. Measurement of the zero crossing in
a Feshbach resonance of fermionic 6Li. Phys. Rev. A 66 (2002), cit. on p. 31.

[146] S. Jochim, M. Bartenstein, G. Hendl, J. Hecker Denschlag, R. Grimm, A.
Mosk, and W. Weidemüller. Magnetic Field Control of Elastic Scattering in a
Cold Gas of Fermionic Lithium Atoms. Phys. Rev. Lett 89 (2002), cit. on p. 31.

[147] A. Mosk, S. Kraft, M. Mudrich, K. Singer, W. Wohlleben, R. Grimm, and
M. Weidemüller. Mixture of ultracold lithium and cesium atoms in an optical
dipole trap. Appl. Phys. B 73 (2001), cit. on pp. 31, 32, 34, 56.

[148] J. R. Taylor. An Introduction to Error Analysis. University Science Books, 1997,
cit. on p. 32.

[149] C. Lobo, A. Recati, S. Giorgini, and S. Stringari. Normal State of a Polarized
Fermi Gas at Unitarity. Phys. Rev. Lett. 97 (2006), cit. on p. 41.

[150] A. Gezerlis, S. Gandolfi, K. E. Schmidt, and J. Carlson. Heavy-light fermion
mixtures at unitarity. Phys. Rev. Lett. 103 (2009), cit. on pp. 41, 102.

http://dx.doi.org/10.1103/PhysRevLett.112.250404
http://dx.doi.org/10.1103/PhysRevLett.112.250404
http://dx.doi.org/10.1103/PhysRevLett.113.240402
http://dx.doi.org/10.1103/PhysRevLett.113.240402
http://dx.doi.org/10.1103/PhysRevA.93.022707
http://dx.doi.org/10.1103/PhysRevA.93.022707
http://dx.doi.org/10.1103/PhysRevLett.120.243403
http://dx.doi.org/10.1103/PhysRevLett.120.243403
http://dx.doi.org/doi:10.1038/nature04936
http://dx.doi.org/doi:10.1038/nature04936
http://dx.doi.org/10.1103/PhysRevA.79.013622
http://dx.doi.org/10.1103/PhysRevA.79.013622
http://dx.doi.org/10.1103/PhysRevA.88.052701
http://dx.doi.org/10.1103/PhysRevA.88.052701
http://dx.doi.org/10.1103/PhysRevA.66.041401
http://dx.doi.org/10.1103/PhysRevA.66.041401
http://dx.doi.org/10.1103/PhysRevLett.89.273202
http://dx.doi.org/10.1103/PhysRevLett.89.273202
http://dx.doi.org/10.1007/s003400100743
http://dx.doi.org/10.1007/s003400100743
http://dx.doi.org/10.1103/PhysRevLett.97.200403
http://dx.doi.org/10.1103/PhysRevLett.97.200403
http://dx.doi.org/10.1103/PhysRevLett.103.060403
http://dx.doi.org/10.1103/PhysRevLett.103.060403


168 bibliography

[151] Z.-X. Ye, A. Canali, E. Soave, M. Kreyer, Y. Yudkin, C. Ravensbergen, E.
Kirilov, and R. Grimm. Observation of low-field Feshbach resonances between
161Dy and 40K. Phys. Rev. A 106 (2022), cit. on pp. 45, 68, 155.

[152] G. A. Bird. Approach to Translational Equilibrium in a Rigid Sphere Gas. Phys.
Fluids 6 (1963), cit. on p. 45.

[153] G. Bird. Molecular gas dynamics. Oxford University Press, 1976, cit. on pp. 45,
46, 48.

[154] G. A. Bird. The DSMC method. CreateSpace Independent Publishing Platform,
2013, cit. on p. 45.

[155] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics. I. General
Method. J. Chem. Phys. 31 (1959), cit. on pp. 45, 46, 48.

[156] D. C. Rapaport. The Art of Molecular Dynamics Simulation. 2nd ed. Cambridge
University Press, 2004, cit. on p. 45.

[157] B. J. Alder, D. M. Gass, and T. E. Wainwright. Studies in Molecular Dynamics.
VIII. The Transport Coefficients for a Hard-Sphere Fluid. J. Chem. Phys. 53 (1970),
cit. on p. 45.

[158] L. Wilets and J. S. Cohen. Fermion molecular dynamics in atomic, molecular, and
optical physics. Contemp. Phys. 39 (1998), cit. on p. 45.

[159] E. Oran, C. Oh, and B. Cybyk. DIRECT SIMULATION MONTE CARLO:
Recent Advances and Applications. Annu. Rev. Fluid Mech. 30 (1998), cit. on
pp. 45, 82.

[160] V. Shariati, M. H. Ahmadian, and E. Roohi. Direct Simulation Monte Carlo
investigation of fluid characteristics and gas transport in porous microchannels. Sci.
Rep. 9 (2019), cit. on p. 45.

[161] R. Horstmann, L. Hecht, S. Kloth, and M. Vogel. Structural and Dynamical
Properties of Liquids in Confinements: A Review of Molecular Dynamics Simulation
Studies. Langmuir 38 (2022), cit. on p. 45.

[162] Hospital, Adam, J. R. Goñi, M. Orozco, and J. L. Gelpí. Molecular dynamics
simulations: advances and applications. Adv. Appl. Bioinform. Chem. 8 (2015),
cit. on p. 45.

[163] H. Wu, E. Arimondo, and C. J. Foot. Dynamics of evaporative cooling for
Bose-Einstein condensation. Phys. Rev. A 56 (1997), cit. on pp. 45, 55, 72, 81.

[164] A. C. J. Wade, D. Baillie, and P. B. Blakie. Direct simulation Monte Carlo method
for cold-atom dynamics: Classical Boltzmann equation in the quantum collision
regime. Phys. Rev. A 84 (2011), cit. on pp. 45, 48.

[165] T. Lepers, D. Davesne, S. Chiacchiera, and M. Urban. Numerical solution of
the Boltzmann equation for the collective modes of trapped Fermi gases. Phys. Rev.
A 82 (2010), cit. on pp. 45, 76, 77, 81, 82.

http://dx.doi.org/10.1103/PhysRevA.106.043314
http://dx.doi.org/10.1103/PhysRevA.106.043314
http://dx.doi.org/10.1063/1.1710976
http://dx.doi.org/10.1063/1.1730376
http://dx.doi.org/10.1063/1.1730376
http://dx.doi.org/10.1063/1.1673845
http://dx.doi.org/10.1063/1.1673845
http://dx.doi.org/10.1080/001075198181991
http://dx.doi.org/10.1080/001075198181991
http://dx.doi.org/10.1146/annurev.fluid.30.1.403
http://dx.doi.org/10.1146/annurev.fluid.30.1.403
http://dx.doi.org/10.1038/s41598-019-52707-3
http://dx.doi.org/10.1038/s41598-019-52707-3
http://dx.doi.org/10.1021/acs.langmuir.2c00521
http://dx.doi.org/10.1021/acs.langmuir.2c00521
http://dx.doi.org/10.1021/acs.langmuir.2c00521
http://dx.doi.org/https://doi.org/10.2147/AABC.S70333
http://dx.doi.org/https://doi.org/10.2147/AABC.S70333
http://dx.doi.org/10.1103/PhysRevA.56.560
http://dx.doi.org/10.1103/PhysRevA.56.560
http://dx.doi.org/10.1103/PhysRevA.84.023612
http://dx.doi.org/10.1103/PhysRevA.84.023612
http://dx.doi.org/10.1103/PhysRevA.84.023612
http://dx.doi.org/10.1103/PhysRevA.82.023609
http://dx.doi.org/10.1103/PhysRevA.82.023609


bibliography 169

[166] V. V. Aristov. Direct methods for solving the Boltzmann equation and study
of nonequilibrium flows. Fluid mechanics and its applications. New York:
Springer, 2001, cit. on p. 46.

[167] J. Von Neumann. Various techniques used in connection with random digits.
Appl. Math Ser 12 (1951), cit. on p. 46.

[168] A. Frisch. Dipolar Quantum Gases of Erbium. PhD thesis. University of Inns-
bruck, 2014, cit. on p. 47.

[169] E. Meiburg. Comparison of the molecular dynamics method and the direct simula-
tion Monte Carlo technique for flows around simple geometries. Phys. Fluids 29
(1986), cit. on p. 48.

[170] W. Wagner. A convergence proof for Bird’s direct simulation Monte Carlo method
for the Boltzmann equation. J. Stat. Phys. 66 (1992), cit. on p. 48.

[171] Z.-X. Sun, Z. Tang, Y.-L. He, and W.-Q. Tao. Proper cell dimension and number
of particles per cell for DSMC. Comput. Fluids 50 (2011), cit. on p. 48.

[172] O. Goulko, F. Chevy, and C. Lobo. Boltzmann equation simulation for a trapped
Fermi gas of atoms. New J. Phys. 14 (2012), cit. on p. 48.

[173] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-uniform Gases
- An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion
in Gases. Cambridge: Cambridge University Press, 1990, cit. on p. 54.

[174] P.-A. Pantel, D. Davesne, and M. Urban. Numerical solution of the Boltzmann
equation for trapped Fermi gases with in-medium effects. Phys. Rev. A 91 (2015),
cit. on pp. 55, 76, 81, 153.

[175] M. Anderlini and D. Guéry-Odelin. Thermalization in mixtures of ultracold
gases. Phys. Rev. A 73 (2006), cit. on pp. 56, 71.

[176] C. Ravensbergen, E. Soave, V. Corre, M. Kreyer, B. Huang, E. Kirilov, and
R. Grimm. Resonantly Interacting Fermi-Fermi Mixture of 161Dy and 40K. Phys.
Rev. Lett. 124 (2020), cit. on pp. 60, 61, 110, 121, 123.

[177] I. Shvarchuck, C. Buggle, D. S. Petrov, M. Kemmann, W. von Klitzing, G. V.
Shlyapnikov, and J. T. M. Walraven. Hydrodynamic behavior in expanding
thermal clouds of 87Rb. Phys. Rev. A 68 (2003), cit. on p. 66.

[178] Y. Kagan, E. L. Surkov, and G. V. Shlyapnikov. Evolution of a Bose gas in
anisotropic time-dependent traps. Phys. Rev. A 55 (1997), cit. on p. 66.

[179] P. Pedri, D. Guéry-Odelin, and S. Stringari. Dynamics of a classical gas includ-
ing dissipative and mean-field effects. Phys. Rev. A 68 (2003), cit. on p. 66.

[180] S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann,
C. H. Schunck, E. G. M. van Kempen, B. J. Verhaar, and W. Ketterle. Radio-
Frequency Spectroscopy of Ultracold Fermions. Science 300 (2003), cit. on p. 69.

http://dx.doi.org/10.1063/1.865961
http://dx.doi.org/10.1063/1.865961
http://dx.doi.org/10.1007/BF01055714
http://dx.doi.org/10.1007/BF01055714
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2011.04.013
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2011.04.013
http://dx.doi.org/10.1088/1367-2630/14/7/073036
http://dx.doi.org/10.1088/1367-2630/14/7/073036
http://dx.doi.org/10.1103/PhysRevA.91.013627
http://dx.doi.org/10.1103/PhysRevA.91.013627
http://dx.doi.org/10.1103/PhysRevA.73.032706
http://dx.doi.org/10.1103/PhysRevA.73.032706
http://dx.doi.org/10.1103/PhysRevLett.124.203402
http://dx.doi.org/10.1103/PhysRevA.68.063603
http://dx.doi.org/10.1103/PhysRevA.68.063603
http://dx.doi.org/10.1103/PhysRevA.55.R18
http://dx.doi.org/10.1103/PhysRevA.55.R18
http://dx.doi.org/10.1103/PhysRevA.68.043608
http://dx.doi.org/10.1103/PhysRevA.68.043608
http://dx.doi.org/10.1126/science.1085335
http://dx.doi.org/10.1126/science.1085335


170 bibliography

[181] M. Bartenstein et al. Precise determination of 6Li cold collision parameters by
radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett. 94
(2005), cit. on p. 69.

[182] C.-H. Wu, I. Santiago, J. W. Park, P. Ahmadi, and M. W. Zwierlein. Strongly
interacting isotopic Bose-Fermi mixture immersed in a Fermi sea. Phys. Rev. A 84
(2011), cit. on p. 69.

[183] I. Fritsche, C. Baroni, E. Dobler, E. Kirilov, B. Huang, R. Grimm, G. M.
Bruun, and P. Massignan. Stability and breakdown of Fermi polarons in a strongly
interacting Fermi-Bose mixture. Phys. Rev. A 103 (2021), cit. on p. 69.

[184] M. Mudrich. Interactions in an optically trapped mixture of ultracold lithium
and cesium atoms: Thermalization, spin-exchange collisions and photoassociation.
PhD thesis. University of Heidelberg, 2003, cit. on p. 71.

[185] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer
simulation method for the calculation of equilibrium constants for the formation of
physical clusters of molecules: Application to small water clusters. J. Chem. Phys.
76 (1982), cit. on p. 72.

[186] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur,
and W. Ketterle. Spin domains in ground-state Bose–Einstein condensates. Nature
396 (1998), cit. on p. 76.

[187] S. B. Papp, J. M. Pino, and C. E. Wieman. Tunable Miscibility in a Dual-Species
Bose-Einstein Condensate. Phys. Rev. Lett. 101 (2008), cit. on p. 76.

[188] G. Orso, L. P. Pitaevskii, and S. Stringari. Equilibrium and dynamics of a trapped
superfluid Fermi gas with unequal masses. Phys. Rev. A 77 (2008), cit. on p. 77.

[189] D. Guéry-Odelin, F. Zambelli, J. Dalibard, and S. Stringari. Collective oscilla-
tions of a classical gas confined in harmonic traps. Phys. Rev. A 60 (1999), cit. on
p. 77.

[190] F. Toschi, P. Capuzzi, S. Succi, P. Vignolo, and M. P. Tosi. Transition to
hydrodynamics in colliding fermion clouds. J. Phys. B: At. Mol. Opt. Phys. 37
(2004), cit. on p. 77.

[191] Y. Asano, S. Watabe, and T. Nikuni. Dipole oscillation of a trapped Bose-Fermi-
mixture gas in collisionless and hydrodynamic regimes. Phys. Rev. A 101 (2020),
cit. on pp. 77, 153.

[192] L. Vichi and S. Stringari. Collective oscillations of an interacting trapped Fermi
gas. Phys. Rev. A 60 (1999), cit. on p. 77.

[193] S. D. Gensemer and D. S. Jin. Transition from Collisionless to Hydrodynamic
Behavior in an Ultracold Fermi Gas. Phys. Rev. Lett. 87 (2001), cit. on p. 77.

http://dx.doi.org/10.1103/PhysRevLett.94.103201
http://dx.doi.org/10.1103/PhysRevLett.94.103201
http://dx.doi.org/10.1103/PhysRevA.84.011601
http://dx.doi.org/10.1103/PhysRevA.84.011601
http://dx.doi.org/10.1103/PhysRevA.103.053314
http://dx.doi.org/10.1103/PhysRevA.103.053314
http://dx.doi.org/10.1063/1.442716
http://dx.doi.org/10.1063/1.442716
http://dx.doi.org/10.1063/1.442716
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevA.77.033611
http://dx.doi.org/10.1103/PhysRevA.77.033611
http://dx.doi.org/10.1103/PhysRevA.60.4851
http://dx.doi.org/10.1103/PhysRevA.60.4851
http://dx.doi.org/10.1088/0953-4075/37/7/056
http://dx.doi.org/10.1088/0953-4075/37/7/056
http://dx.doi.org/10.1103/PhysRevA.101.013611
http://dx.doi.org/10.1103/PhysRevA.101.013611
http://dx.doi.org/10.1103/PhysRevA.60.4734
http://dx.doi.org/10.1103/PhysRevA.60.4734
http://dx.doi.org/10.1103/PhysRevLett.87.173201
http://dx.doi.org/10.1103/PhysRevLett.87.173201


bibliography 171

[194] G. Ferrari, M. Inguscio, W. Jastrzebski, G. Modugno, G. Roati, and A. Simoni.
Collisional Properties of Ultracold K-Rb Mixtures. Phys. Rev. Lett. 89 (2002),
cit. on p. 77.

[195] L. W. Nordhiem. On the kinetic method in the new statistics and application in
the electron theory of conductivity. Proc. R. Soc. Lond. A 119 (1928), cit. on
p. 81.

[196] E. A. Uehling and G. E. Uhlenbeck. Transport Phenomena in Einstein-Bose and
Fermi-Dirac Gases. I. Phys. Rev. 43 (1933), cit. on p. 81.

[197] G. F. Bertsch, H. Kruse, and S. D. Gupta. Boltzmann equation for heavy ion
collisions. Phys. Rev. C 29 (1984), cit. on p. 81.

[198] G. Bertsch and S. Das Gupta. A guide to microscopic models for intermediate
energy heavy ion collisions. Phys. Rep. 160 (1988), cit. on p. 81.

[199] E. Cerboneschi, C. Menchini, and E. Arimondo. Monte Carlo simulations of
Bose-Einstein condensation of trapped atoms. Phys. Rev. A 62 (2000), cit. on
p. 81.

[200] A. L. Garcia and W. Wagner. Direct simulation Monte Carlo method for the
Uehling-Uhlenbeck-Boltzmann equation. Phys. Rev. E 68 (2003), cit. on p. 81.

[201] S. Riedl, E. R. Sánchez Guajardo, C. Kohstall, A. Altmeyer, M. J. Wright,
J. Hecker Denschlag, R. Grimm, G. M. Bruun, and H. Smith. Collective
oscillations of a Fermi gas in the unitarity limit: Temperature effects and the role of
pair correlations. Phys. Rev. A 78, 053609 (2008), cit. on p. 81.

[202] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical dipole traps for
neutral atoms. Adv. At. Mol. Opt. Phys. 42 (2000), cit. on pp. 85, 94, 96, 111,
121.

[203] T. Walker and P. Feng. Measurements of Collisions Between Laser-Cooled Atoms.
Adv. At. Mol. Opt. Phys. 34 (1994), cit. on p. 85.

[204] D. W. Sesko, T. G. Walker, and C. E. Wieman. Behavior of neutral atoms in a
spontaneous force trap. J. Opt. Soc. Am. B 8 (1991), cit. on p. 85.

[205] S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck. Laser Cooling to Quantum
Degeneracy. Phys. Rev. Lett. 110, 263003 (2013), cit. on p. 85.

[206] D. E. Pritchard. Cooling Neutral Atoms in a Magnetic Trap for Precision Spec-
troscopy. Phys. Rev. Lett. 51 (1983), cit. on p. 85.

[207] I. H. Deutsch and P. S. Jessen. Quantum control and measurement of atomic
spins in polarization spectroscopy. Opt. Commun. 283 (2010), cit. on pp. 86, 88,
95, 116.

[208] F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel. Dynamical polarizability of
atoms in arbitrary light fields: general theory and application to cesium. Eur. Phys.
J. D 67 (2013), cit. on pp. 86, 88, 116, 118.

http://dx.doi.org/10.1103/PhysRevLett.89.053202
http://dx.doi.org/https://doi.org/10.1098/rspa.1928.0126
http://dx.doi.org/https://doi.org/10.1098/rspa.1928.0126
http://dx.doi.org/10.1103/PhysRev.43.552
http://dx.doi.org/10.1103/PhysRev.43.552
http://dx.doi.org/10.1103/PhysRevC.29.673
http://dx.doi.org/10.1103/PhysRevC.29.673
http://dx.doi.org/https://doi.org/10.1016/0370-1573(88)90170-6
http://dx.doi.org/https://doi.org/10.1016/0370-1573(88)90170-6
http://dx.doi.org/10.1103/PhysRevA.62.013606
http://dx.doi.org/10.1103/PhysRevA.62.013606
http://dx.doi.org/10.1103/PhysRevE.68.056703
http://dx.doi.org/10.1103/PhysRevE.68.056703
http://dx.doi.org/10.1103/PhysRevA.78.053609
http://dx.doi.org/10.1103/PhysRevA.78.053609
http://dx.doi.org/10.1103/PhysRevA.78.053609
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/https://doi.org/10.1016/S1049-250X(08)60076-2
http://dx.doi.org/10.1364/JOSAB.8.000946
http://dx.doi.org/10.1364/JOSAB.8.000946
http://dx.doi.org/10.1103/PhysRevLett.110.263003
http://dx.doi.org/10.1103/PhysRevLett.110.263003
http://dx.doi.org/10.1103/PhysRevLett.51.1336
http://dx.doi.org/10.1103/PhysRevLett.51.1336
http://dx.doi.org/10.1016/j.optcom.2009.10.059
http://dx.doi.org/10.1016/j.optcom.2009.10.059
http://dx.doi.org/10.1140/epjd/e2013-30729-x
http://dx.doi.org/10.1140/epjd/e2013-30729-x


172 bibliography

[209] T. Chalopin, C. Bouazza, A. Evrard, V. Makhalov, D. Dreon, J. Dalibard, L. A.
Sidorenkov, and S. Nascimbene. Quantum-enhanced sensing using non-classical
spin states of a highly magnetic atom. Nat. Commun. 9 (2018), cit. on pp. 88,
110.

[210] M. S. Safronova, U. I. Safronova, and C. W. Clark. Magic wavelengths for
optical cooling and trapping of potassium. Phys. Rev. A 87 (2013), cit. on pp. 88,
97, 103, 115, 118.

[211] M. Wickliffe, J. Lawler, and G Nave. Atomic transition probabilities for Dy I
and Dy II. J. Quant. Spectrosc. Radiat. Transf. 66 (2000), cit. on pp. 88, 119.

[212] J. Wang, H. Guo, and Q. Chen. Exotic phase separation and phase diagrams of
a Fermi-Fermi mixture in a trap at finite temperature. Phys. Rev. A 87 (2013),
cit. on p. 90.

[213] H. Caldas and Q. Chen. The Gor’kov and Melik-Barkhudarov Correction to the
Mean-Field Critical Field Transition to Fulde–Ferrell–Larkin–Ovchinnikov States.
Ann. Phys. 532 (2020), cit. on p. 90.

[214] K. Yang. Realization and Detection of Fulde-Ferrell-Larkin-Ovchinnikov Superfluid
Phases in Trapped Atomic Fermion Systems. Phys. Rev. Lett. 95 (2005), cit. on
p. 90.

[215] M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin. Probing Pair-Correlated
Fermionic Atoms through Correlations in Atom Shot Noise. Phys. Rev. Lett. 94
(2005), cit. on p. 90.

[216] M. Pini, P. Pieri, and G. C. Strinati. Strong Fulde-Ferrell Larkin-Ovchinnikov
pairing fluctuations in polarized Fermi systems. Phys. Rev. Res. 3 (2021), cit. on
p. 90.

[217] N. Navon, R. P. Smith, and Z. Hadzibabic. Quantum gases in optical boxes.
Nat. Phys. 17 (2021), cit. on pp. 90, 91.

[218] G. Gauthier, T. A. Bell, A. B. Stilgoe, M. Baker, H. Rubinsztein-Dunlop, and
T. W. Neely. Chapter One - Dynamic high-resolution optical trapping of ultracold
atoms. Ed. by L. F. Dimauro, H. Perrin, and S. F. Yelin. Adv. At. Mol. Opt.
Phys. Academic Press, 2021, cit. on pp. 91, 128–130.

[219] L. Amico et al. Roadmap on Atomtronics: State of the art and perspective. AVS
Quantum Science 3 (2021), cit. on p. 91.

[220] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T.
Lahaye, and A. Browaeys. Single-Atom Trapping in Holographic 2D Arrays of
Microtraps with Arbitrary Geometries. Phys. Rev. X 4 (2014), cit. on p. 91.

[221] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt,
F. Grusdt, E. Demler, D. Greif, and M. Greiner. A cold-atom Fermi–Hubbard
antiferromagnet. Nature 545 (2017), cit. on p. 91.

http://dx.doi.org/10.1038/s41467-018-07433-1
http://dx.doi.org/10.1038/s41467-018-07433-1
http://dx.doi.org/10.1103/PhysRevA.87.052504
http://dx.doi.org/10.1103/PhysRevA.87.052504
http://dx.doi.org/https://doi.org/10.1016/S0022-4073(99)00173-9
http://dx.doi.org/https://doi.org/10.1016/S0022-4073(99)00173-9
http://dx.doi.org/10.1103/PhysRevA.87.041601
http://dx.doi.org/10.1103/PhysRevA.87.041601
http://dx.doi.org/https://doi.org/10.1002/andp.202000222
http://dx.doi.org/https://doi.org/10.1002/andp.202000222
http://dx.doi.org/10.1103/PhysRevLett.95.218903
http://dx.doi.org/10.1103/PhysRevLett.95.218903
http://dx.doi.org/10.1103/PhysRevLett.94.110401
http://dx.doi.org/10.1103/PhysRevLett.94.110401
http://dx.doi.org/10.1103/PhysRevResearch.3.043068
http://dx.doi.org/10.1103/PhysRevResearch.3.043068
http://dx.doi.org/10.1038/s41567-021-01403-z
http://dx.doi.org/10.1116/5.0026178
http://dx.doi.org/10.1103/PhysRevX.4.021034
http://dx.doi.org/10.1103/PhysRevX.4.021034
http://dx.doi.org/10.1038/nature22362
http://dx.doi.org/10.1038/nature22362


bibliography 173

[222] M. Lebrat, P. Grišins, D. Husmann, S. Häusler, L. Corman, T. Giamarchi,
J.-P. Brantut, and T. Esslinger. Band and Correlated Insulators of Cold Fermions
in a Mesoscopic Lattice. Phys. Rev. X 8 (2018), cit. on p. 91.

[223] K. Shibata, H. Ikeda, R. Suzuki, and T. Hirano. Compensation of gravity on
cold atoms by a linear optical potential. Phys. Rev. Research 2 (2020), cit. on
pp. 91, 123.

[224] E. Soave, V. Corre, C. Ravensbergen, J. Han, M. Kreyer, E. Kirilov, and R.
Grimm. Low-Field Feshbach Resonances and Three-Body Losses in a Fermionic
Quantum Gas of 161Dy. Ukr. J. Phys. 67 (2022), cit. on pp. 92, 155.

[225] M. Pini, P. Pieri, R. Grimm, and G. C. Strinati. Beyond-mean-field description of
a trapped unitary Fermi gas with mass and population imbalance. Phys. Rev. A
103 (2021), cit. on pp. 92, 111, 121, 123, 154, 155.

[226] K. D. Bonin and V. V. Kresin. Electric-dipole polarizabilities of atoms, molecules,
and clusters. World Scientific, 1997, cit. on p. 94.

[227] J. Mitroy, M. S. Safronova, and C. W. Clark. Theory and applications of atomic
and ionic polarizabilities. J. Phys. B: At. Mol. Opt. Phys. 43 (2010), cit. on p. 94.

[228] H. H. Stroke. Advances in atomic, molecular, and optical physics. Gulf Profes-
sional Publishing, 2005, cit. on p. 94.

[229] L. J. LeBlanc and J. H. Thywissen. Species-specific optical lattices. Phys. Rev. A
75 (2007), cit. on pp. 94, 123.

[230] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt. Optical atomic
clocks. Rev. Mod. Phys. 87 (2015), cit. on p. 94.

[231] V. Galitski and I. B. Spielman. Spin-orbit coupling in quantum gases. Nature
494 (2013), cit. on p. 95.

[232] D. Sukachev, A. Sokolov, K. Chebakov, A. Akimov, S. Kanorsky, N. Ko-
lachevsky, and V. Sorokin. Magneto-optical trap for thulium atoms. Phys. Rev.
A 82 (2010), cit. on p. 95.

[233] K Aikawa, S Baier, A Frisch, M Mark, C Ravensbergen, and F Ferlaino.
Observation of Fermi surface deformation in a dipolar quantum gas. Science 345
(2014), cit. on p. 95.

[234] J. Miao, J. Hostetter, G. Stratis, and M. Saffman. Magneto-optical trapping of
holmium atoms. Phys. Rev. A 89 (2014), cit. on p. 95.

[235] B. Hemmerling, G. K. Drayna, E. Chae, A. Ravi, and J. M. Doyle. Buffer gas
loaded magneto-optical traps for Yb, Tm, Er and Ho. New J. Phys. 16 (2014),
cit. on p. 95.

[236] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, and
T. Pfau. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530
(2016), cit. on pp. 95, 110.

http://dx.doi.org/10.1103/PhysRevX.8.011053
http://dx.doi.org/10.1103/PhysRevX.8.011053
http://dx.doi.org/10.1103/PhysRevResearch.2.013068
http://dx.doi.org/10.1103/PhysRevResearch.2.013068
http://dx.doi.org/10.15407/ujpe67.5.334
http://dx.doi.org/10.15407/ujpe67.5.334
http://dx.doi.org/10.1103/PhysRevA.103.023314
http://dx.doi.org/10.1103/PhysRevA.103.023314
http://dx.doi.org/10.1088/0953-4075/43/20/202001
http://dx.doi.org/10.1088/0953-4075/43/20/202001
http://dx.doi.org/10.1103/PhysRevA.75.053612
http://dx.doi.org/10.1103/RevModPhys.87.637
http://dx.doi.org/10.1103/RevModPhys.87.637
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1103/PhysRevA.82.011405
http://dx.doi.org/10.1126/science.1255259
http://dx.doi.org/10.1103/PhysRevA.89.041401
http://dx.doi.org/10.1103/PhysRevA.89.041401
http://dx.doi.org/10.1088/1367-2630/16/6/063070
http://dx.doi.org/10.1088/1367-2630/16/6/063070
http://dx.doi.org/10.1038/nature16485


174 bibliography

[237] D. Dreon, L. Sidorenkov, C. Bouazza, W. Maineult, J. Dalibard, and S.
Nascimbène. Optical cooling and trapping of highly magnetic atoms: the benefits
of a spontaneous spin polarization. J. Phys. B 50 (2017), cit. on pp. 95, 97, 111.

[238] X. Cui, B. Lian, T.-L. Ho, B. L. Lev, and H. Zhai. Synthetic gauge field with
highly magnetic lanthanide atoms. Phys. Rev. A 88 (2013), cit. on p. 95.

[239] V. A. Dzuba, V. V. Flambaum, and B. L. Lev. Dynamic polarizabilities and
magic wavelengths for dysprosium. Phys. Rev. A 83 (2011), cit. on pp. 95, 97, 98,
102, 103, 110.

[240] M. Lepers, J.-F. Wyart, and O. Dulieu. Anisotropic optical trapping of ultracold
erbium atoms. Phys. Rev. A 89 (2014), cit. on pp. 95, 110.

[241] D. Sukachev, S. Fedorov, I. Tolstikhina, D. Tregubov, E. Kalganova, G.
Vishnyakova, A. Golovizin, N. Kolachevsky, K. Khabarova, and V. Sorokin.
Inner-shell magnetic dipole transition in Tm atoms: A candidate for optical lattice
clocks. Phys. Rev. A 94 (2016), cit. on pp. 95, 96, 111.

[242] H Li, J.-F. Wyart, O Dulieu, S Nascimbène, and M Lepers. Optical trapping of
ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities
and van der Waals C6 coefficients. J. Phys. B: At. Mol. Opt. Phys. 50 (2017),
cit. on pp. 95, 97, 98, 101–103, 110.

[243] H. Li, J.-F. Wyart, O. Dulieu, and M. Lepers. Anisotropic optical trapping as a
manifestation of the complex electronic structure of ultracold lanthanide atoms: The
example of holmium. Phys. Rev. A 95 (2017), cit. on pp. 95, 110, 118.

[244] A. A. Golovizin, E. Kalganova, D. Sukachev, G. Vishnyakova, D. Tregubov,
K. Khabarova, V. Sorokin, and N. Kolachevsky. Methods for determining the
polarisability of the fine structure levels in the ground state of the thulium atom.
Quantum Electron. 47 (2017), cit. on pp. 95, 96, 111.

[245] T. Maier. Interactions in a quantum gas of dysprosium atoms. PhD thesis. Uni-
versity of Stuttgart, 2015, cit. on pp. 95, 96, 111.

[246] M. Schmitt. A self-bound dilute quantum liquid of dysprosium atoms. PhD thesis.
University of Stuttgart, 2017, cit. on pp. 95, 111.

[247] J. H. Becher, S. Baier, K. Aikawa, M. Lepers, J.-F. Wyart, O. Dulieu, and
F. Ferlaino. Anisotropic polarizability of erbium atoms. Phys. Rev. A 97 (2018),
cit. on pp. 95, 96, 102, 111.

[248] A. Khramov, A. H., W. Dowd, R. J. Roy, C. Makrides, A. Petrov, S. Ko-
tochigova, and S. Gupta. Ultracold Heteronuclear Mixture of Ground and Excited
State Atoms. Phys. Rev. Lett. 112 (2014), cit. on p. 96.

[249] B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S.
Kotochigova, J. Ye, and D. S. Jin. Anisotropic Polarizability of Ultracold Polar
40K87Rb Molecules. Phys. Rev. Lett. 109 (2012), cit. on pp. 96, 111.

http://dx.doi.org/10.1088/1361-6455/aa5db5
http://dx.doi.org/10.1088/1361-6455/aa5db5
http://dx.doi.org/10.1103/PhysRevA.88.011601
http://dx.doi.org/10.1103/PhysRevA.88.011601
http://dx.doi.org/10.1103/PhysRevA.83.032502
http://dx.doi.org/10.1103/PhysRevA.83.032502
http://dx.doi.org/10.1103/PhysRevA.89.022505
http://dx.doi.org/10.1103/PhysRevA.89.022505
http://dx.doi.org/10.1103/PhysRevA.94.022512
http://dx.doi.org/10.1103/PhysRevA.94.022512
http://dx.doi.org/10.1088/1361-6455/50/1/014005
http://dx.doi.org/10.1088/1361-6455/50/1/014005
http://dx.doi.org/10.1088/1361-6455/50/1/014005
http://dx.doi.org/10.1103/PhysRevA.95.062508
http://dx.doi.org/10.1103/PhysRevA.95.062508
http://dx.doi.org/10.1103/PhysRevA.95.062508
http://dx.doi.org/10.1070/QEL16327
http://dx.doi.org/10.1070/QEL16327
http://dx.doi.org/10.1103/PhysRevA.97.012509
http://dx.doi.org/10.1103/PhysRevLett.112.033201
http://dx.doi.org/10.1103/PhysRevLett.112.033201
http://dx.doi.org/10.1103/PhysRevLett.109.230403
http://dx.doi.org/10.1103/PhysRevLett.109.230403


bibliography 175

[250] J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde,
J. M. Hutson, and H.-C. Nägerl. An ultracold high-density sample of rovibronic
ground-state molecules in an optical lattice. Nat. Phys. 6 (2010), cit. on pp. 96,
111.

[251] M. S. Safronova. private communication. 2017, cit. on p. 97.

[252] D. Fernandes, F. Sievers, N. Kretzschmar, S. Wu, C. Salomon, and F. Chevy.
Sub-Doppler laser cooling of fermionic 40K atoms in three-dimensional gray optical
molasses. Europhys. Lett. 100 (2012), cit. on p. 97.

[253] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of Bose-Einstein
condensation in trapped gases. Rev. Mod. Phys. 71 (1999), cit. on p. 98.

[254] V. Flambaum and M. Dzuba. private communication. 2017, cit. on p. 102.

[255] M. Lepers and O. Dulieu. private communication. 2017, cit. on p. 102.

[256] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye. Cold and ultracold molecules:
Science, technology and applications. New J. Phys. 11 (2009), cit. on p. 102.

[257] G. Quéméner and P. S. Julienne. Ultracold Molecules under Control! Chem.
Rev. (2012), cit. on p. 102.

[258] E. B. Norrgard, D. J. McCarron, M. H. Steinecker, M. R. Tarbutt, and D.
DeMille. Submillikelvin Dipolar Molecules in a Radio-Frequency Magneto-Optical
Trap. Phys. Rev. Lett. 116 (2016), cit. on p. 102.

[259] E. Chae, L. Anderegg, B. L. Augenbraun, A. Ravi, B. Hemmerling, N. R.
Hutzler, A. L. Collopy, J. Ye, W. Ketterle, and J. M. Doyle. One-dimensional
magneto-optical compression of a cold CaF molecular beam. New J. Phys. 19
(2017), cit. on p. 102.

[260] P. Soldan, P. S. Zuchowski, and J. M. Hutson. Prospects for sympathetic cooling
of polar molecules: NH with alkali-metal and alkaline-earth atoms - a new hope.
Faraday Discuss. 142 (2009), cit. on p. 102.

[261] J. Lim, M. D. Frye, J. M. Hutson, and M. R. Tarbutt. Modeling sympathetic
cooling of molecules by ultracold atoms. Phys. Rev. A 92 (2015), cit. on p. 102.

[262] M. L. González-Martínez and J. M. Hutson. Ultracold Hydrogen Atoms: A
Versatile Coolant to Produce Ultracold Molecules. Phys. Rev. Lett. 111 (2013),
cit. on p. 102.

[263] W. V. Liu and F. Wilczek. Interior Gap Superfluidity. Phys. Rev. Lett. 90 (2003),
cit. on p. 102.

[264] M. Iskin and C. A. R. Sá de Melo. Two-Species Fermion Mixtures with Population
Imbalance. Phys. Rev. Lett. 97, 100404 (2006), cit. on p. 102.

http://dx.doi.org/10.1038/nphys1533
http://dx.doi.org/10.1038/nphys1533
http://dx.doi.org/10.1209/0295-5075/100/63001
http://dx.doi.org/10.1209/0295-5075/100/63001
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1021/cr300092g
http://dx.doi.org/10.1103/PhysRevLett.116.063004
http://dx.doi.org/10.1103/PhysRevLett.116.063004
http://dx.doi.org/10.1088/1367-2630/aa6470
http://dx.doi.org/10.1088/1367-2630/aa6470
http://dx.doi.org/10.1039/b822769c
http://dx.doi.org/10.1039/b822769c
http://dx.doi.org/10.1103/PhysRevA.92.053419
http://dx.doi.org/10.1103/PhysRevA.92.053419
http://dx.doi.org/10.1103/PhysRevLett.111.203004
http://dx.doi.org/10.1103/PhysRevLett.111.203004
http://dx.doi.org/10.1103/PhysRevLett.90.047002
http://dx.doi.org/10.1103/PhysRevLett.97.100404
http://dx.doi.org/10.1103/PhysRevLett.97.100404


176 bibliography

[265] M. M. Parish, F. M. Marchetti, A. Lamacraft, and B. D. Simons. Polarized
Fermi Condensates with Unequal Masses: Tuning the Tricritical Point. Phys. Rev.
Lett. 98 (2007), cit. on p. 102.

[266] M. A. Baranov, C. Lobo, and G. V. Shlyapnikov. Superfluid pairing between
fermions with unequal masses. Phys. Rev. A 78 (2008), cit. on p. 102.

[267] J. Braun, J. E. Drut, and D. Roscher. Zero-Temperature Equation of State of
Mass-Imbalanced Resonant Fermi Gases. Phys. Rev. Lett. 114 (2015), cit. on
p. 102.

[268] G. Durastante, C. Politi, M. Sohmen, P. Ilzhöfer, M. J. Mark, M. A. Norcia,
and F. Ferlaino. Feshbach resonances in an erbium-dysprosium dipolar mixture.
Phys. Rev. A 102 (2020), cit. on p. 110.

[269] M. Schmitt, E. A. L. Henn, J. Billy, H. Kadau, T. Maier, A. Griesmaier,
and T. Pfau. Spectroscopy of a narrow-line optical pumping transition in atomic
dysprosium. Opt. Lett. 38 (2013), cit. on p. 110.

[270] J. Hostetter, J. D. Pritchard, J. E. Lawler, and M. Saffman. Measurement of
holmium Rydberg series through magneto-optical trap depletion spectroscopy. Phys.
Rev. A 91 (2015), cit. on p. 110.

[271] A. Golovizin, E. Fedorova, D. Tregubov, D. Sukachev, K. Khabarova, V.
Sorokin, and N. Kolachevsky. Inner-shell clock transition in atomic thulium
with a small blackbody radiation shift. Nat. Commun. 10 (2019), cit. on p. 110.

[272] A. Evrard, V. Makhalov, T. Chalopin, L. A. Sidorenkov, J. Dalibard, R.
Lopes, and S. Nascimbene. Enhanced Magnetic Sensitivity with Non-Gaussian
Quantum Fluctuations. Phys. Rev. Lett. 122 (2019), cit. on p. 110.

[273] V. Makhalov, T. Satoor, A. Evrard, T. Chalopin, R. Lopes, and S. Nascimbene.
Probing Quantum Criticality and Symmetry Breaking at the Microscopic Level.
Phys. Rev. Lett. 123 (2019), cit. on p. 110.

[274] T. Chalopin et al. Anisotropic light shift and magic polarization of the intercom-
bination line of dysprosium atoms in a far-detuned dipole trap. Phys. Rev. A 98
(2018), cit. on p. 111.

[275] J Hecker Denschlag, J. E. Simsarian, H Häffner, C McKenzie, A Browaeys,
D Cho, K Helmerson, S. L. Rolston, and W. D. Phillips. A Bose-Einstein
condensate in an optical lattice. J. Phys. B 35 (2002), cit. on pp. 111, 114.

[276] J. Heinze, S. Götze, J. S. Krauser, B. Hundt, N. Fläschner, D.-S. Lühmann,
C. Becker, and K. Sengstock. Multiband Spectroscopy of Ultracold Fermions:
Observation of Reduced Tunneling in Attractive Bose-Fermi Mixtures. Phys. Rev.
Lett. 107 (2011), cit. on pp. 111, 114.

http://dx.doi.org/10.1103/PhysRevLett.98.160402
http://dx.doi.org/10.1103/PhysRevLett.98.160402
http://dx.doi.org/10.1103/PhysRevA.78.033620
http://dx.doi.org/10.1103/PhysRevA.78.033620
http://dx.doi.org/10.1103/PhysRevLett.114.050404
http://dx.doi.org/10.1103/PhysRevLett.114.050404
http://dx.doi.org/10.1103/PhysRevA.102.033330
http://dx.doi.org/10.1364/OL.38.000637
http://dx.doi.org/10.1364/OL.38.000637
http://dx.doi.org/10.1103/PhysRevA.91.012507
http://dx.doi.org/10.1103/PhysRevA.91.012507
http://dx.doi.org/10.1038/s41467-019-09706-9
http://dx.doi.org/10.1038/s41467-019-09706-9
http://dx.doi.org/10.1103/PhysRevLett.122.173601
http://dx.doi.org/10.1103/PhysRevLett.122.173601
http://dx.doi.org/10.1103/PhysRevLett.123.120601
http://dx.doi.org/10.1103/PhysRevA.98.040502
http://dx.doi.org/10.1103/PhysRevA.98.040502
http://dx.doi.org/https://doi.org/10.1088/0953-4075/35/14/307
http://dx.doi.org/https://doi.org/10.1088/0953-4075/35/14/307
http://dx.doi.org/10.1103/PhysRevLett.107.135303
http://dx.doi.org/10.1103/PhysRevLett.107.135303


bibliography 177

[277] A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen.
Adiabatic Cooling of Cesium to 700 nK in an Optical Lattice. Phys. Rev. Lett. 74
(1995), cit. on p. 113.

[278] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, and T. Esslinger. Exploring
Phase Coherence in a 2D Lattice of Bose-Einstein Condensates. Phys. Rev. Lett. 87
(2001), cit. on p. 113.

[279] E. R. Eliel, W Hogervorst, G. J. Zaal, K. A. H. van Leeuwen, and J Blok. A
study of the spectrum of natural dysprosium with the laser-atomic-beam technique.
II. Hyperfine structure. J. Phys. B: Atom. Mol. Phys. 13 (1980), cit. on p. 118.

[280] D. Dreon. Designing and building an ultracold Dysprosium experiment: a new
framework for light-spin interaction. PhD thesis. Paris Sciences Lettres Research
University, 2017, cit. on p. 118.

[281] M. Gustavsson, H. Lundberg, L. Nilsson, and S. Svanberg. Lifetime measure-
ments for excited states of rare-earth atoms using pulse modulation of a cw dye-laser
beam. J. Opt. Soc. Am. 69 (1979), cit. on p. 119.

[282] J. J. Curry, E. A. D. Hartog, and J. E. Lawler. Radiative lifetimes of Dy I and
Dy II. J. Opt. Soc. Am. B 14 (1997), cit. on p. 119.

[283] Y. B. Ovchinnikov, I. Manek, and R. Grimm. Surface Trap for Cs atoms based
on Evanescent-Wave Cooling. Phys. Rev. Lett. 79 (1997), cit. on p. 123.

[284] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic.
Bose-Einstein Condensation of Atoms in a Uniform Potential. Phys. Rev. Lett. 110
(2013), cit. on p. 123.

[285] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck, and
M. W. Zwierlein. Homogeneous Atomic Fermi Gases. Phys. Rev. Lett. 118 (2017),
cit. on pp. 123, 154.

[286] B. Hundt. Momentum-Resolved Optical Lattice Modulation Spectroscopy on Bose-
Fermi Mixtures. Diploma thesis. University of Hamburg, 2011, cit. on p. 123.

[287] J. Liang, R. N. Kohn, M. F. Becker, and D. J. Heinzen. 1.5% Root-Mean-
Square Flat-Intensity Laser Beam Formed Using a Binary-Amplitude Spatial Light
Modulator. Appl. Opt. 48 (2009), cit. on p. 130.

[288] J. Liang, M. F. Becker, R. N. Kohn, and D. J. Heinzen. Homogeneous one-
dimensional optical lattice generation using a digital micromirror device-based
high-precision beam shaper. J. Micro/ Nanolithogr. MEMS MOEMS 11 (2012),
cit. on pp. 130, 144, 147.

[289] Y.-X. Ren, R.-D. Lu, and L. Gong. Tailoring light with a digital micromirror
device. Ann. Phys. 527 (2015), cit. on p. 130.

http://dx.doi.org/10.1103/PhysRevLett.74.1542
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1088/0022-3700/13/11/011
http://dx.doi.org/10.1088/0022-3700/13/11/011
http://dx.doi.org/10.1088/0022-3700/13/11/011
http://dx.doi.org/10.1364/JOSA.69.000984
http://dx.doi.org/10.1364/JOSA.69.000984
http://dx.doi.org/10.1364/JOSA.69.000984
http://dx.doi.org/10.1364/JOSAB.14.002788
http://dx.doi.org/10.1364/JOSAB.14.002788
http://dx.doi.org/10.1103/PhysRevLett.79.2225
http://dx.doi.org/10.1103/PhysRevLett.79.2225
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.118.123401
http://dx.doi.org/10.1364/AO.48.001955
http://dx.doi.org/10.1364/AO.48.001955
http://dx.doi.org/10.1364/AO.48.001955
http://dx.doi.org/10.1117/1.JMM.11.2.023002
http://dx.doi.org/10.1117/1.JMM.11.2.023002
http://dx.doi.org/10.1117/1.JMM.11.2.023002
http://dx.doi.org/https://doi.org/10.1002/andp.201500111
http://dx.doi.org/https://doi.org/10.1002/andp.201500111


178 bibliography

[290] G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-
Dunlop, and T. W. Neely. Direct imaging of a digital-micromirror device for
configurable microscopic optical potentials. Optica 3 (2016), cit. on p. 130.

[291] K. Hueck, A. Mazurenko, N. Luick, T. Lompe, and H. Moritz. Note: Suppres-
sion of kHz-frequency switching noise in digital micro-mirror devices. Rev. Sci.
Instrum. 88 (2017), cit. on pp. 130, 135.

[292] R. Floyd and L. Steinberg. An adaptive algorithm for spatial grey scale. In:
Proceedings of the Society for Information Display. Ed. by M. R. Douglass and
L. J. Hornbeck. Vol. 17. International Society for Optics and Photonics. SPIE,
1976, cit. on p. 133.

[293] C. Dorrer and J. D. Zuegel. Design and analysis of binary beam shapers using
error diffusion. J. Opt. Soc. Am. B 24 (2007), cit. on p. 133.

[294] M. F. Becker, J. Liang, R. N. K. Jr., and D. J. Heinzen. High-precision laser
beam shaping using binary-amplitude DLP spatial light modulators. In: Emerging
Digital Micromirror Device Based Systems and Applications II. Ed. by M. R.
Douglass and L. J. Hornbeck. Vol. 7596. International Society for Optics and
Photonics. SPIE, 2010, cit. on pp. 134, 144, 145, 147.

[295] Peter Buchebner. online, cit. on p. 134.

[296] J.-L. Ville. Quantum gases in box potentials : sound and light in bosonic Flatland.
PhD thesis. Université Paris sciences et lettres, 2018, cit. on p. 135.

[297] European Machine Vision Association (EMVA). EMVA Standard 1288: Stan-
dard for Characterization of Image Sensors and Cameras, Release 4.0. 2021, cit. on
p. 139.

[298] FLIR Integrated Imaging Solutions Inc. EMVA 1288 IMAGING PERFOR-
MANCE FLIR BLACKFLY S BFS-U3-88S6. 2018, cit. on p. 140.

[299] Labsphere, Inc. Technical Guide: Integrating Sphere Theory and Applications.
2017, cit. on p. 140.

[300] G. A. Phelps. A dipolar quantum gas microscope. PhD thesis. Harvard Univer-
sity, 2019, cit. on p. 143.

[301] J. W. Goodman. Speckle Phenomena in Optics: Theory and Applications, Second
Edition. SPIE, 2020, cit. on p. 143.

[302] F. Etzold. Laser Beam Shaping with a Digital Micromirror Device. Diploma
thesis. Johannes Gutenberg-Universität, Mainz, 2010, cit. on p. 144.

[303] G. Del Pace. Tailored optical potentials for experiments with atomic superfluids.
PhD thesis. Universita degli studi di Firenze, 2018, cit. on p. 145.

[304] J. Liang, S.-Y. Wu, R. N. Kohn, M. F. Becker, and D. J. Heinzen. Grayscale
laser image formation using a programmable binary mask. Opt. Eng. 51 (2012),
cit. on p. 146.

http://dx.doi.org/10.1364/OPTICA.3.001136
http://dx.doi.org/10.1364/OPTICA.3.001136
http://dx.doi.org/10.1063/1.4973969
http://dx.doi.org/10.1063/1.4973969
http://dx.doi.org/10.1364/JOSAB.24.001268
http://dx.doi.org/10.1364/JOSAB.24.001268
http://dx.doi.org/10.1117/12.839468
http://dx.doi.org/10.1117/12.839468
http://dx.doi.org/10.1117/1.OE.51.10.108201
http://dx.doi.org/10.1117/1.OE.51.10.108201


bibliography 179

[305] M. Narushima, S. Watabe, and T. Nikuni. Density and spin modes in imbalanced
normal Fermi gases from collisionless to hydrodynamic regime. J. Phys. B: At. Mol.
Opt. Phys. 51 (2018), cit. on p. 153.

[306] I. Manek, Y. Ovchinnikov, and R. Grimm. Generation of a hollow laser beam for
atom trapping using an axicon. Opt. Commun. 147 (1998), cit. on p. 154.

[307] C. Ravensbergen. Creation of a Fermi-Fermi mixture of dysprosium and potassium
with resonant interactions. PhD thesis. University of Innsbruck, 2020, cit. on
p. 155.

[308] E. Soave. Interaction Properties of an Ultracold Fermi-Fermi Mixture of Dyspro-
sium and Potassium Atoms. PhD thesis. University of Innsbruck, 2022, cit. on
p. 155.

http://dx.doi.org/10.1088/1361-6455/aaa594
http://dx.doi.org/10.1088/1361-6455/aaa594
http://dx.doi.org/https://doi.org/10.1016/S0030-4018(97)00645-7
http://dx.doi.org/https://doi.org/10.1016/S0030-4018(97)00645-7




How you climb a mountain is more important than reaching the top.

— Yvon Chouinard

A C K N O W L E D G E M E N T

As I reach the final pages of this thesis, I would like to take the opportunity to
express my gratitude to all the people who have contributed to making this project
possible. First, I would like to thank Rudi Grimm for welcoming me in his group,
first as a master student, and then also giving me the opportunity to carry on with
a doctoral thesis. It has been exciting to work in a completely new experiment
and I really appreciate the freedom to pursue the technical challenges that seemed
interesting to me. I have personally learned a lot while working on these side
projects that were maybe not immediately helpful to the experiment at the time.

After all these years of working together, I also want to thank my colleagues,
the past and current members of the Dy-K experiment: Cornee, Slava, Vincent,
Elisa, Emil, Jeong Ho, Yaakov, Zhuxiong and Alberto. In particular, thank you to
Cornee, for building the Dy-K machine with his just-do-it attitude, an area where
I could and can still learn a lot, and to Alberto for numerous discussions about
the simulations and the manuscript. My gratitude also goes to Tracy Northup for
support and feedback as my second supervisor, and Emil and Vincent for their
corrections and thoughts on the manuscript.

I also want to thank the rest of the Grimm group, the FeLiKx team, for stimulating
discussions and support, as well as Christine and Verena for their administrative
support. Special thanks also to Gregor for his patience when pointing me in the
right direction whenever I needed help with electronics or coding. Last and not
least I also want to thank the whole ultracold group in Innsbruck for creating a
stimulating environment for interesting science.

As the exceptional climber (and later also Nobel prize laureate in physics) Mike
Kosterlitz once said: "Where I got my best ideas, [...] was sitting somewhere on a
cliff holding a rope." I consider myself fortunate to have found a great climbing
partner and friend in my postdoc Vincent, with whom I was lucky to share not only
the lab, but also a rope in short afternoon sessions in the crag or more extensive
trips to Sardinia, Brittany and the Dolomites (and the one or the other beer).
This extends to my many other friends and partners in sport, that were always
complicit in fleeing university to go climbing, skiing or biking, whenever I became
stuck somewhere and needed to clear my mind to make room for fresh ideas.
Thanks for the many small and big adventures together! Let me also not forget
the Fensterbankler-Gruppe. The daily exchange in all matters Führungskräfte has

181



182 acknowledgement

become a tradition that hopefully will outlive our academic careers and time in
Innsbruck.

At last, but most importantly, I want to thank my family! To my parents Christiane
and Tom, and to my favorite human Kathrin, thank you for always believing in me,
kicking my butt when I lost motivation, but also celebrating the little successes, and
supporting me throughout the last years. This thesis would not have been possible
without you!



colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede and Ivo Pletikosić. The style was inspired by Robert
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